E-Book, Englisch, 288 Seiten
Liu Practical Deep Learning at Scale with MLflow
1. Auflage 2022
ISBN: 978-1-80324-222-4
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 0 - No protection
Bridge the gap between offline experimentation and online production
E-Book, Englisch, 288 Seiten
ISBN: 978-1-80324-222-4
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 0 - No protection
No detailed description available for "Practical Deep Learning at Scale with MLflow".
Fachgebiete
Weitere Infos & Material
Table of Contents - Deep Learning Life Cycle and MLOps Challenges
- Getting Started with MLflow for Deep Learning
- Tracking Models, Parameters, and Metrics
- Tracking Code and Data Versioning
- Running DL Pipelines in Different Environments
- Running Hyperparameter Tuning at Scale
- Multi-Step Deep Learning Inference Pipeline
- Deploying a DL Inference Pipeline at Scale
- Fundamentals of Deep Learning Explainability
- Implementing DL Explainability with MLflow