Buch, Englisch, 509 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 785 g
6th Chinese Conference, PRCV 2023, Xiamen, China, October 13-15, 2023, Proceedings, Part II
Buch, Englisch, 509 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 785 g
Reihe: Lecture Notes in Computer Science
ISBN: 978-981-99-8431-2
Verlag: Springer Nature Singapore
The 13-volume set LNCS 14425-14437 constitutes the refereed proceedings of the 6th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2023, held in Xiamen, China, during October 13–15, 2023.
The 532 full papers presented in these volumes were selected from 1420 submissions. The papers have been organized in the following topical sections: Action Recognition, Multi-Modal Information Processing, 3D Vision and Reconstruction, Character Recognition, Fundamental Theory of Computer Vision, Machine Learning, Vision Problems in Robotics, Autonomous Driving, Pattern Classification and Cluster Analysis, Performance Evaluation and Benchmarks, Remote Sensing Image Interpretation, Biometric Recognition, Face Recognition and Pose Recognition, Structural Pattern Recognition, Computational Photography, Sensing and Display Technology, Video Analysis and Understanding, Vision Applications and Systems, Document Analysis and Recognition, Feature Extraction and Feature Selection, Multimedia Analysis and Reasoning, Optimization and Learning methods, Neural Network and Deep Learning, Low-Level Vision and Image Processing, Object Detection, Tracking and Identification, Medical Image Processing and Analysis.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Computerkommunikation & -vernetzung
- Mathematik | Informatik EDV | Informatik Informatik Bildsignalverarbeitung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Angewandte Informatik
- Mathematik | Informatik EDV | Informatik Informatik Rechnerarchitektur
Weitere Infos & Material
3D Vision and Reconstruction.- Character Recognition.- Fundamental Theory of Computer Vision.