Lodewijks Current Developments in Bulk Solids Handling
1. Auflage 2010
ISBN: 978-3-8343-6117-2
Verlag: Vogel Communications Group GmbH & Co. KG
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 251 Seiten
ISBN: 978-3-8343-6117-2
Verlag: Vogel Communications Group GmbH & Co. KG
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1;Title;3
2;Copyright;4
3;Contents;5
4;Preface;7
5;A: BELT CONVEYING;9
5.1;A.1 Design Considerations to Reduce the Costs of Conveyor Systems;11
5.1.1;1 INTRODUCTION;11
5.1.2;2 BULK SOLID AND CONVEYOR BELT FLEXURE RESISTANCE;11
5.1.3;3 ROTATING RESISTANCE OF IDLER ROLLS;14
5.1.4;4 INDENTATION ROLLING RESISTANCE;17
5.1.5;5 ECONOMIC CONSIDERATIONS;19
5.1.6;6 CONCLUSION;20
5.1.7;7 REFERENCES;21
5.2;A.2 Determination of Rolling Resistance of Belt Conveyors using Rubber Data: Fact or Fiction?;23
5.2.1;1 INTRODUCTION;23
5.2.2;2 RECENT SOUTH AFRICAN PROJECTS;24
5.2.3;3 VISCOELASTICITY;25
5.2.4;4 RHEOLOGICAL TESTING;27
5.2.5;5 THE INDENTATION ROLLING RESISTANCE;31
5.2.6;6 DISCUSSION;34
5.2.7;7 CONCLUSIONS;35
5.2.8;8 REFERENCES;36
5.3;A.3 Indentation Rolling Resistance of Steel Cord Conveyor Belts: A Pseudo 3D Viscoelastic Finite Element Analysis;37
5.3.1;1 INTRODUCTION;37
5.3.2;2 BACKGROUND;37
5.3.3;3 FINITE ELEMENT ANALYSIS;39
5.3.4;4 RESULTS AND DISCUSSION;41
5.3.5;5 CONCLUSIONS;47
5.3.6;6 ACKNOWLEDGEMENTS;47
5.3.7;7 REFERENCES;47
5.4;A.4 The possibilities of decreasing the belt conveyors main drive power demand;49
5.4.1;1 INTRODUCTION;49
5.4.2;2 LONG-TERM “IN-SITU” TESTS OF THE SELECTED HIGH CAPACITY BELT CONVEYOR;50
5.4.3;3 FINAL REMARKS;52
5.4.4;4 REFERENCES;52
5.5;A.5 Theoretical and Experimental Noise Examinations on the RopeCon System;55
5.5.1;1 INTRODUCTION;55
5.5.2;2 SOUND MEASUREMENTS IN FLIRSCH;58
5.5.3;3 DESIGN DIFFERENCES BETWEEN THE ROPECON SYSTEM AND STANDARD BELT CONVEYORS;58
5.5.4;4 NOISE EMISSION OF THE ROPECON SYSTEM IN REGARD TO STANDARD BELT CONVEYORS;59
5.6;A.6 Lay?out Considerations for Multiple Driven Belt Conveyor Systems;61
5.6.1;1 INTRODUCTION;61
5.6.2;2 DYNAMIC MODEL;62
5.6.3;3 TEST CASES;64
5.6.4;4 SIMULATION RESULTS;65
5.6.5;5 CONCLUSION;67
5.6.6;6 REFERENCES;67
6;B: PNEUMATIC CONVEYING;69
6.1;B1: Profiling the Dilute Phase Flow Parameters of Large Throughput Coke Suction Cranes – A case study;71
6.1.1;1 INTRODUCTION;71
6.1.2;2 CURRENT CONVEYING SYSTEM;73
6.1.3;3 PROPOSED NOZZLE AND INNER PIPE ANALYSIS;76
6.1.4;4 NOMENCLATURE;77
6.1.5;5 REFERENCES;78
6.2;B.2 Horizontal dense-phase pneumatic conveying of bulk solids;79
6.2.1;1 INTRODUCTION;79
6.2.2;2 MATERIAL AND METHOD;79
6.2.3;3 RESULTS AND DISCUSSION;81
6.2.4;4 CONCLUSION;84
6.2.5;5 NOMENCLATURE;84
6.2.6;6 REFERENCES;84
6.3;B.3 Investigations on single slugs to explain high pressure loss by horizontal dense-phase pneumatic conveying;87
6.3.1;1 INTRODUCTION;87
6.3.2;2 TEST MATERIAL AND CONVEYING EQUIPMENT;87
6.3.3;3 PRESSURE LOSS;88
6.3.4;4 INVESTIGATIONS ON SINGLE SLUGS;90
6.3.5;5 CONCLUSION;96
6.3.6;6 NOMENCLATURE;97
6.3.7;7 REFERENCES;97
6.4;B.4 On the Modelling of Pressure Drop for the Dense-Phase Pneumatic Conveying of Powders;99
6.4.1;1 INTRODUCTION;99
6.4.2;2 EXPERIMENTAL;99
6.4.3;3 “STRAIGHT PIPE” PNEUMATIC CONVEYING CHARACTERISTICS;101
6.4.4;4 MODELLING SOLIDS FRICTION FACTOR USING STRAIGHT PIPE DATA;101
6.4.5;5 SCALE-UP EVALUATION OF MODELS DERIVED USING STRAIGHT PIPE DATA;102
6.4.6;6 MODELLING SOLIDS FRICTION FACTOR BY “BACK CALCULATION” METHOD;102
6.4.7;7 SCALE-UP EVALUATION OF MODELS DERIVED USING “BACK CALCULATION” METHOD;103
6.4.8;8 CONCLUSION;103
6.4.9;9 NOMENCLATURE;111
6.4.10;10 REFERENCES;111
6.4.11;ACKNOWLEDGEMENT;112
6.5;B.5 Pneumatic Conveying System Design - How good is Your Computer Aided Design Program;113
6.5.1;1 INTRODUCTION;113
6.5.2;2 CONVEYING MODE;114
6.5.3;3 MATERIAL TYPE;115
6.5.4;4 MATERIAL GRADE;115
6.5.5;5 PIPELINE BEND GEOMETRY;116
6.5.6;6 MATERIAL DEGRATION;118
6.5.7;7 CONVEYING PIPELINE MATERIAL;119
6.5.8;8 CONCLUSIONS;120
6.5.9;9 REFERENCES;120
6.6;B.6 Power requirements for pneumatic conveying systems;123
6.6.1;1 INTRODUCTION;123
6.6.2;2 POWER PRODUCTION;125
6.6.3;3 SPECIFIC ENERGY;126
6.6.4;4 INFLUENCE OF PIPELINE BORE;128
6.6.5;5 STEPPED BORE PIPELINES;130
6.6.6;6 CONCLUSIONS;131
6.6.7;7 REFERENCES;131
7;C: SILO AND DRY BULK TERMINAL TECHNOLOGY;133
7.1;C.1 Experimental and design loads ofpressure of bulk materials against silo wall;135
7.1.1;1 INTRODUCTION;135
7.1.2;2 ACTING LOADS ON SILO;135
7.1.3;3 MEASURING THE LOADS;136
7.1.4;4 RESULTS OF INVESTIGATIONS;137
7.1.5;5 CHARACTERISTIC AND DESIGN LOADS, COINCIDENCE OF LOADS;137
7.1.6;6 DETERMINATION OF SAFETY FOR THE SILO STRUCTURE;138
7.1.7;7 CONCLUSIONS;138
7.1.8;8 REFERENCES;140
7.2;C.2 Cylindrical corrugated steel silos in Brazil: failure modes;141
7.2.1;1 INTRODUCTION;141
7.2.2;2 PROBLEMS WITH CYLINDRICAL METAL SILOS;142
7.2.3;3 CONCLUSIONS;146
7.2.4;REFERENCES;147
7.2.5;ACKNOWLEDGEMENTS;147
7.3;C.3: Avoiding and Curing Hopper Problems;149
7.3.1;1 INTRODUCTION;149
7.3.2;2 ENABLING HOPPER FLOW;149
7.3.3;3 HOPPER INSERTS;150
7.3.4;4 GRAVITY FLOW;150
7.3.5;5 HOPPER DESIGN ASPECTS;154
7.3.6;REFERENCES;160
7.4;C.4 Modern Coal Storage - A Safe and Efficient Storage Solution;161
7.4.1;1 INTRODUCTION;161
7.4.2;2 SILO OPERATION;161
7.4.3;3 THE MAIN CRITERIA IN DECIDING WHETHER TO USE SILO STORAGE FOR COAL;163
7.4.4;4 HELSINKI PROJECT;166
7.5;C.5 Open versus closed storage on bulk terminals;169
7.5.1;1 INTRODUCTION;169
7.5.2;2 DRY BULK TERMINALS;169
7.5.3;3 STORAGE ON TERMINALS;171
7.5.4;4 CLOSED STORAGE FACILITIES;172
7.5.5;5 CLOSED STORAGE ON BULK TERMINALS: ACHIEVABLE?;175
7.5.6;6 REFERENCES;176
7.6;C.6 Modern Dry Bulk Terminal Design;177
7.6.1;1 INTRODUCTION – A TYPICALBULK TERMINAL;177
7.6.2;2. TERMINAL EXPANSION OR REDESIGN;180
7.6.3;3 DISCRETE EVENT SIMULATION AS A MODERN DESIGN TOOL;183
7.6.4;4 NEW APPROACHES TO TERMINAL MAINTENANCE;187
7.6.5;5 ENVIRONMENTAL ISSUES;189
7.6.6;6 CONCLUSIONS;191
7.6.7;7 REFERENCES;192
8;D: ENVIRONMENTAL ASPECTS;193
8.1;D.1: Environmental Management Accounting a sa selection tool for storage systems;195
8.1.1;1 INTRODUCTION;195
8.1.2;2 ENVIRONMENTAL MANAGEMENT ACCOUNTING;196
8.1.3;3 USING EMA;197
8.1.4;4 CASE;199
8.1.5;5 RESULT OF THE CASE STUDY;204
8.1.6;6 DISCUSSION;205
8.1.7;7 REFERENCES;206
8.2;D.2 Reducing Dust Emissions from Ship Holds During Loading of Bulk Materials;207
8.2.1;1 INTRODUCTION;207
8.2.2;2 GRAIN LOADING PROJECT;207
8.2.3;3 ILMENITE LOADING PROJECT;214
8.2.4;4 CONCLUSIONS;217
8.2.5;5 REFERENCES;217
8.3;D.3 Dust Explosion Protection using Flameless Venting;219
8.3.1;1 INTRODUCTION;219
8.3.2;2 FLAMELESS VENTING DEVICES;219
8.3.3;3 FLAMELESS VENTING TESTING AND CERTIFICATION;221
8.3.4;4 FLAMELESS VENTING SYSTEM DESIGN;224
8.3.5;5 EXAMPLES;227
8.3.6;6 CONCLUSION;227
8.3.7;7 REFERENCES;227
8.4;D.4 Noise Reduction of Nozzles by use of Adequate Geometries;229
8.4.1;1 INTRODUCTION;229
8.4.2;2 ACCOUSTIC MEASUREMENTS ON AIR NOZZLES;231
8.4.3;3 RESULTS FROM THE CONDUCTED TESTS;235
8.4.4;4 DEPENDENCY OF NOZZLE GEOMETRY ON NOISE EMMISIONS;235
8.4.5;5 CONCLUSION;236
8.5;D.5 Determination of the Dustiness Characteristics of Bulk Solids Through the Use of Experimental Procedures and Test Apparatus;237
8.5.1;1 INTRODUCTION;237
8.5.2;2 DUST EXTINCTION MOISTURE LEVEL;238
8.5.3;3. MATERIAL SAMPLE PREPARATION AND WIND TUNNEL TEST PROCEDURE;239
8.5.4;4. WIND TUNNEL TEST APPARATUS;240
8.5.5;5. BULK MATERIALS OPTIMUM MOISTURE CONTENT;242
8.5.6;6 CHEMICAL VENEER SURFACE TREATMENT;244
8.5.7;7 CONCLUSION;244
8.5.8;8 REFERENCES;244
8.6;D.6 Continuous particulate emission monitors for industrial processes;247
8.6.1;1 INTRODUCTION;247
8.6.2;2 REGULATIONS;247
8.6.3;3 HOW TO MONITOR?;248
8.6.4;4 WHY MONITOR?;250
8.6.5;5 CONCLUSION;250