Faber / Looijenga | Moduli of Curves and Abelian Varieties | Buch | 978-3-322-90174-3 | www.sack.de

Buch, Englisch, 200 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 375 g

Reihe: Aspects of Mathematics

Faber / Looijenga

Moduli of Curves and Abelian Varieties

The Dutch Intercity Seminar on Moduli
Softcover Nachdruck of the original 1. Auflage 1999
ISBN: 978-3-322-90174-3
Verlag: Vieweg+Teubner Verlag

The Dutch Intercity Seminar on Moduli

Buch, Englisch, 200 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 375 g

Reihe: Aspects of Mathematics

ISBN: 978-3-322-90174-3
Verlag: Vieweg+Teubner Verlag


The Dutch Intercity Seminar on Moduli, which dates back to the early
eighties, was an initiative of G. van der Geer, F. Oort and C. Peters.
Through the years it became a focal point of Dutch mathematics and
it gained some fame, also outside Holland, as an active biweekly
research seminar. The tradition continues up to today.
The present volume, with contributions of R. Dijkgraaf, C. Faber,
G. van der Geer, R. Hain, E. Looijenga, and F. Oort, originates
from the seminar held in 1995--96. Some of the articles here were
discussed, in preliminary form, in the seminar; others are completely
new. Two introductory papers, on moduli of abelian varieties and
on moduli of curves, accompany the articles.
Faber / Looijenga Moduli of Curves and Abelian Varieties jetzt bestellen!

Zielgruppe


Upper undergraduate

Weitere Infos & Material


Moduli of Abelian Varieties: A Short Introduction and Survey.- 1 Introduction.- 2 Elliptic Curves.- 3 Abelian Varieties.- 4 The Torelli Morphism.- 5 Cycles on the Moduli Space of Abelian Varieties.- 6 The Moduli Space Ag in Positive Characteristic.- 7 The Moduli Space in Mixed Characteristic.- Remarks on Moduli of Curves.- 1 Introduction.- 2 Mapping Class Groups.- 3 The Torelli Group.- 4 Moduli Spaces of Curves.- 5 Deligne-Mumford-Knudsen Completion.- 6 Covers of Moduli Stacks.- 7 Tautological Classes.- 8 Stability.- 9 A Proarithmetic Hull of the Mapping Class Group.- 10 The Witten Conjecture.- 11 Complete Subvarieties of Moduli Spaces.- 12 Intersection Theory.- 13 Stable Maps and the Virasoro Conjecture.- A Stratification of a Moduli Space of Polarized Abelian Varieties in Positive Characteristic.- 1 Introduction.- 2 Elementary Sequences and Final Filtrations.- 3 Explicit Description of Some of the Strata.- 4 Standard Types.- 5 Moving in a Stratum.- 6 The Raynaud Trick.- 7 Results.- 8 Some Questions.- Cycles on the Moduli Space of Abelian Varieties.- 1 Introduction.- 2 The Tautological Subring of Ag.- 3 The Tautological Ring of A?
g.- 4 Cycle Relations from Grothendieck-Riemann-Roch.- 5 On the Torsion of the Class ?
g.- 6 The Ekedahl-Oort Stratification in Positive Characteristic.- 7 The Ekedahl-Oort Strata as Degeneracy Loci.- 8 The Degeneracy Locus Uø and ?0(p).- 9 The Cycle Classes of the Strata.- 10 Effectivity of Tautological Classes.- 11 Some Additional Results.- Locally Symmetric Families of Curves and Jacobians.- 1 Introduction.- 2 Background and Definitions.- 3 Homomorphisms to Mapping Class Groups.- 4 Maps of Lattices to Mapping Class Groups.- 5 Locally Symmetric Hypersurfaces in Locally Symmetric Varieties.- 6 Geometry of the Jacobian Locus.- 7 LocallySymmetric Families of Curves.- 8 Locally Symmetric Families of Jacobians.- 9 Appendix: An Example.- A Conjectural Description of the Tautological Ring of the Moduli Space of Curves.- 1 Introduction.- 2 Known Results.- 3 The Conjectures and the Evidence.- 4 Calculations.- 5 Other Relations.- Correspondences between Moduli Spaces of Curves.- 1 Introduction.- 2 Correspondences for Mapping Class Groups: Closed Surfaces.- 3 Action of the Correspondences on the Tautological Classes.- 4 Hecke Operators Attached to Finite Abelian Covers.- 5 Correspondences via Ramified Covers.- 6 Correspondences Acting on a Lie Algebra.- Fields, Strings, Matrices and Symmetric Products.- 1 Introduction.- 2 Particles, Symmetric Products and Fields.- 3 Second-quantized Strings.- 4 Light-Cone Quantization of Quantum Field Theories.- 5 Light-Cone Quantization of String Theories.- 6 Matrix Strings and Interactions.- 7 String Theories in Six Dimensions.- Addresses.


Prof. Dr. Eduard Looijenga ist Mathematiker an der Universität Utrecht, Niederlande.

Dr. Carel Faber ist jetzt am Max-Planck-Institut für Mathematik in Bonn tätig.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.