Lütkebohmert | Codierungstheorie | Buch | 978-3-528-03197-8 | sack.de

Buch, Deutsch, 279 Seiten, Format (B × H): 170 mm x 240 mm, Gewicht: 507 g

Reihe: vieweg studium; Aufbaukurs Mathematik

Lütkebohmert

Codierungstheorie

Algebraisch-geometrische Grundlagen und Algorithmen
2003
ISBN: 978-3-528-03197-8
Verlag: Vieweg+Teubner Verlag

Algebraisch-geometrische Grundlagen und Algorithmen

Buch, Deutsch, 279 Seiten, Format (B × H): 170 mm x 240 mm, Gewicht: 507 g

Reihe: vieweg studium; Aufbaukurs Mathematik

ISBN: 978-3-528-03197-8
Verlag: Vieweg+Teubner Verlag


Beginnend mit der Fragestellung nach zuverlässiger Datenübertragung wird die elementare lineare Codierungstheorie dargestellt. Insbesondere wird das Problem der Konstruktion von optimalen Codes herausgearbeitet. Dieses anspruchsvolle Problem wird mit Mitteln der algebraischen Geometrie gelöst. Das Buch liefert einen schnellen elementaren Zugang zu den algebraischen Kurven und führt den Leser an die grundlegenden Sätze von Bezout und Riemann-Roch heran. Weiterhin werden klassische Fragen von E. Artin und A. Weil über die Zetafunktion eines algebraischen Funktionenkörpers ebenfalls vollständig behandelt. Außerdem werden algebraische Kurven über endlichen Körpern mit vielen rationalen Punkten konstruiert. Nach der mehr theoretischen Lösung des Problems optimaler Codes wird abschließend der algorithmische Zugang von der Codierung bis zur Decodierung behandelt.

Lütkebohmert Codierungstheorie jetzt bestellen!

Zielgruppe


Upper undergraduate


Autoren/Hrsg.


Weitere Infos & Material


0 Einleitung.- 0.1 Das Problem der Codierungstheorie.- 0.2 Der binäre symmetrische Kanal.- 0.3 Beispiel eines fehlerkorrigierenden Codes.- 0.4 Satz von Shannon.- 1 Lineare Codes.- 1.1 Allgemeine Theorie.- 1.2 Hamming Codes.- 1.3 Beispiel eines BCH-Codes.- 1.4 Der duale Code.- 1.5 Reed-Muller-Codes.- 2 Spezielle gute Codes.- 2.1 Hadamard Codes.- 2.2 Binäre Golay-Codes.- 3 Zyklische Codes.- 3.1 Grundlagen und Definitionen.- 3.2 Idempotente eines zyklischen Codes.- 3.3 BCH-Codes.- 3.4 Codierer für zyklische Codes.- 3.5 Decodierung von BCH-Codes.- 4 Reed-Solomon-Codes.- 4.1 RS-Codes.- 4.2 Interleaving.- 4.3 Codierung auf Speichermedien.- 5 Schranken für Codes.- 5.1 Gilbert-Varshamov Schranke.- 5.2 Obere Schranken.- 6 Geometrische Codes.- 6.1 Algebraische Kurven.- 6.2 Definitionen und erste Eigenschaften.- 6.3 Klassische Goppa-Codes.- 6.4 Schranken für geometrische Codes.- 6.5 Kurven mit vielen rationalen Punkten.- 7 Rationale Punkte auf algebraischen Kurven.- 7.1 Zetafunktion einer algebraischen Kurve.- 7.2 Rationalität der Zetafunktion.- 7.3 Riemannsche Vermutung im Kurvenfall.- 7.4 Schranken für die Anzahl der Punkte.- 8 Geometrie der algebraischen Kurven.- 8.1 Ebene Kurven.- 8.2 Desingularisierung von Kurven.- 8.3 Satz von Riemann-Roch.- 8.4 Residuensatz.- 8.5 Hurwitzsche Geschlechterformel.- 9 Implementierung von geometrischen Codes.- 9.1 Codierung.- 9.2 Decodierung nach Skorobogatov und Vladut.- 9.3 Decodierung nach Feng und Rao.- A Kommutative Algebra.- A.1 Galoistheorie.- A.2 Endliche Körper.- A.3 Ganze Ringerweiterungen.- A.4 Affine Algebren.- A.5 Differentiale.- B Algebraische Geometrie.- B.l Affine Varietäten.- B.2 Varietäten.- B.3 Eigenschaften von Morphismen.


Neben zahlreichen Publikationen auf dem Gebiet der arithmetischen algebraischen Geometrie ist Prof. Werner Lütkebohmert u.a. Autor des Standardwerkes über Nèron-Modelle (erschienen in der Reihe Ergebnisse der Mathematik, Springer-Verlag).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.