Buch, Englisch, 164 Seiten, Format (B × H): 173 mm x 246 mm, Gewicht: 476 g
Buch, Englisch, 164 Seiten, Format (B × H): 173 mm x 246 mm, Gewicht: 476 g
Reihe: Synthesis Lectures on Computer Vision
ISBN: 978-3-031-57815-1
Verlag: Springer International Publishing
This book provides an extensive examination of state-of-the-art methods in multimodal retrieval, generation, and the pioneering field of retrieval-augmented generation. The work is rooted in the domain of Transformer-based models, exploring the complexities of blending and interpreting the intricate connections between text and images. The authors present cutting-edge theories, methodologies, and frameworks dedicated to multimodal retrieval and generation, aiming to furnish readers with a comprehensive understanding of the current state and future prospects of multimodal AI. As such, the book is a crucial resource for anyone interested in delving into the intricacies of multimodal retrieval and generation. Serving as a bridge to mastering and leveraging advanced AI technologies in this field, the book is designed for students, researchers, practitioners, and AI aficionados alike, offering the tools needed to expand the horizons of what can be achieved in multimodal artificial intelligence.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Warehouse
- Mathematik | Informatik EDV | Informatik Informatik Bildsignalverarbeitung
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Information Retrieval
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Computer Vision
Weitere Infos & Material
Preface.- Motivation and Background.- Review: Methods for Information Retrieval under Single Modality Setting.- Text IR.- Image IR.- Audio IR.- Review: Multimodal Representation Learning.- Evaluation Methods.- Information Retrieval for Multi-modality Setting.- Conclusions and Future Directions.