Luque / Speight | Gasification for Synthetic Fuel Production | E-Book | sack.de
E-Book

E-Book, Englisch, 348 Seiten

Reihe: Woodhead Publishing Series in Energy

Luque / Speight Gasification for Synthetic Fuel Production

Fundamentals, Processes and Applications
1. Auflage 2014
ISBN: 978-0-85709-808-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

Fundamentals, Processes and Applications

E-Book, Englisch, 348 Seiten

Reihe: Woodhead Publishing Series in Energy

ISBN: 978-0-85709-808-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Gasification involves the conversion of carbon sources without combustion to syngas, which can be used as a fuel itself or further processed to synthetic fuels. The technology provides a potentially more efficient means of energy generation than direct combustion. This book provides an overview of gasification science and engineering and the production of synthetic fuels by gasification from a variety of feedstocks. Part one introduces gasification, reviewing the scientific basis of the process and gasification engineering. Part two then addresses gasification and synthentic fuel production processes. Finally, chapters in part three outline the different applications of gasification, with chapters on the conversion of different types of feedstock. - Examines the design of gasifiers, the preparation of feedstocks, and the economic, environmental and policy issues related to gasification - Reviews gasification processes for liquid fuel production - Outlines the different applications of gasification technology

Luque / Speight Gasification for Synthetic Fuel Production jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Gasification for Synthetic: Fuel Production Fundamentals, Processes, and Applications;4
3;Copyright;5
4;Contents;6
5;List of contributors;10
6;Woodhead Publishing Series in Energy;12
7;Part One: Fundamentals;16
7.1;Chapter 1: Gasification and synthetic liquid fuel production;18
7.1.1;1.1. Introduction;18
7.1.2;1.2. Gasification processes;19
7.1.3;1.3. Gasification feedstocks;20
7.1.3.1;1.3.1. Coal;20
7.1.3.2;1.3.2. Biomass;22
7.1.3.3;1.3.3. Petroleum residues;24
7.1.3.4;1.3.4. Black liquor;26
7.1.4;1.4. Gasification for power generation;27
7.1.4.1;1.4.1. General aspects;27
7.1.4.2;1.4.2. Cogasification of coal with biomass and waste;28
7.1.4.2.1;1.4.2.1. Biomass;29
7.1.4.2.2;1.4.2.2. Waste;31
7.1.5;1.5. Gasification for synthetic fuel production;33
7.1.5.1;1.5.1. Gaseous products;34
7.1.5.1.1;1.5.1.1. Synthesis gas;34
7.1.5.1.2;1.5.1.2. Low-heat content (low-Btu) gas;35
7.1.5.1.3;1.5.1.3. Medium-heat content (medium-Btu) gas;35
7.1.5.1.4;1.5.1.4. High-heat content (high-Btu) gas;36
7.1.5.2;1.5.2. Liquid fuels;37
7.1.6;1.6. Future trends;38
7.2;Chapter 2: Types of gasifier for synthetic liquid fuel production;44
7.2.1;2.1. Introduction;44
7.2.2;2.2. Gasifier types;45
7.2.2.1;2.2.1. Fixed-bed gasifiers;46
7.2.2.2;2.2.2. Fluid-bed gasifiers;48
7.2.2.3;2.2.3. Entrained-bed gasifier;51
7.2.2.4;2.2.4. Molten salt gasifier;52
7.2.3;2.3. Products of gasification;53
7.2.3.1;2.3.1. Gases;54
7.2.3.2;2.3.2. Other gaseous products;56
7.2.3.3;2.3.3. Tar;56
7.2.4;2.4. Reactor design: chemical aspects;57
7.2.4.1;2.4.1. Feedstock devolatilization;57
7.2.4.2;2.4.2. Char gasification;58
7.2.4.3;2.4.3. Chemistry;59
7.2.5;2.5. Reactor design: physical aspects;60
7.2.5.1;2.5.1. Influence of feedstock quality;60
7.2.5.2;2.5.2. Mixed feedstocks;61
7.2.5.3;2.5.3. Mineral matter content and ash production;62
7.2.5.4;2.5.4. Heat release;62
7.2.5.5;2.5.5. Other design options;63
7.2.6;2.6. Gasification mechanism;63
7.2.6.1;2.6.1. Primary gasification;64
7.2.6.2;2.6.2. Secondary gasification;65
7.2.6.3;2.6.3. Shift conversion;65
7.2.6.4;2.6.4. Hydrogasification;65
7.2.6.5;2.6.5. Catalytic gasification;66
7.2.6.6;2.6.6. Plasma gasification;67
7.3;Chapter 3: Preparation of feedstocks for gasification for synthetic liquid fuel production;72
7.3.1;3.1. Introduction;72
7.3.2;3.2. Feedstock types, properties, and characterization;73
7.3.3;3.3. Feedstock suitability and utilization challenges;75
7.3.4;3.4. Preparation techniques for onward processing;79
7.3.4.1;3.4.1. Crushing, separation, and drying;79
7.3.4.2;3.4.2. Compaction, pelletizing, and briquetting;80
7.3.5;3.5. Advantages and limitations of feedstocks for gasification;82
7.4;Chapter 4: Sustainability assessment of gasification processes for synthetic liquid fuel production;88
7.4.1;4.1. Introduction;88
7.4.2;4.2. Environmental and energy issues;89
7.4.2.1;4.2.1. LCA of biofuels;89
7.4.2.2;4.2.2. Impacts on energy;92
7.4.3;4.3. Economic assessment of synthetic liquid and gaseous biofuels;95
7.4.3.1;4.3.1. Biodiesel;95
7.4.3.1.1;4.3.1.1. Feedstock options and land use;95
7.4.3.1.2;4.3.1.2. Feedstock, capital, and other costs;97
7.4.3.2;4.3.2. Bioethanol;98
7.4.3.2.1;4.3.2.1. Feedstock options and land use;98
7.4.3.2.2;4.3.2.2. Feedstock, capital, and other costs;100
7.4.3.3;4.3.3. Algae fuels;101
7.4.3.4;4.3.4. Biogas fuels;103
7.4.3.4.1;4.3.4.1. The role of gasification;103
7.4.3.4.2;4.3.4.2. Economic assessment of syngas;103
7.4.3.4.3;4.3.4.3. Economic assessment of SNG;104
7.4.4;4.4. The role of sustainability assessment in supporting international biofuel policies;106
7.4.5;4.5. Conclusions;109
7.4.6;4.6. Future trends;110
8;Part Two: Gasification processes for synthetic liquid fuel production;116
8.1;Chapter 5: Gasification reaction kinetics for synthetic liquid fuel production;118
8.1.1;5.1. Introduction;118
8.1.2;5.2. General chemistry of gasification;119
8.1.2.1;5.2.1. Devolatilization;121
8.1.2.2;5.2.2. Char gasification;121
8.1.2.3;5.2.3. Products;123
8.1.3;5.3. Process chemistry;124
8.1.3.1;5.3.1. General aspects;124
8.1.3.2;5.3.2. Pretreatment;125
8.1.3.3;5.3.3. Primary gasification;125
8.1.3.4;5.3.4. Secondary gasification;126
8.1.3.5;5.3.5. Carbon dioxide gasification;127
8.1.3.6;5.3.6. Water gas shift reaction;127
8.1.3.7;5.3.7. Methanation;129
8.1.3.8;5.3.8. Hydrogasification;129
8.1.4;5.4. Conclusions;130
8.2;Chapter 6: Gasification processes for syngas and hydrogen production;134
8.2.1;6.1. Introduction;134
8.2.2;6.2. Synthesis gas production;135
8.2.2.1;6.2.1. Steam-methane reforming;136
8.2.2.2;6.2.2. Autothermal reforming;141
8.2.2.3;6.2.3. Combined reforming;142
8.2.2.4;6.2.4. Partial oxidation;142
8.2.2.5;6.2.5. Membrane reactors;144
8.2.3;6.3. Hydrogen production;145
8.2.3.1;6.3.1. Heavy residue gasification and combined cycle power generation;145
8.2.3.2;6.3.2. Hybrid gasification process;146
8.2.3.3;6.3.3. Hydrocarbon gasification;146
8.2.3.4;6.3.4. Hypro process;146
8.2.3.5;6.3.5. Pyrolysis processes;147
8.2.3.6;6.3.6. Shell gasification process;148
8.2.3.7;6.3.7. Steam-naphtha reforming;148
8.2.3.8;6.3.8. Texaco gasification (partial oxidation) process;149
8.2.3.9;6.3.9. Recovery from fuel gas;150
8.2.4;6.4. Gasification products: composition and quality;150
8.2.4.1;6.4.1. Purification;151
8.2.4.2;6.4.2. Oil-water separation;155
8.2.5;6.5. Advantages and limitations;155
8.3;Chapter 7: Synthetic liquid fuel production from gasification;162
8.3.1;7.1. Introduction;162
8.3.2;7.2. Fischer-Tropsch synthesis;164
8.3.2.1;7.2.1. Fischer-Tropsch liquids;164
8.3.2.2;7.2.2. Upgrading Fischer-Tropsch liquids;166
8.3.2.2.1;7.2.2.1. Gasoline production;168
8.3.2.2.2;7.2.2.2. Diesel production;170
8.3.3;7.3. Sabatier-Senderens process;170
8.3.3.1;7.3.1. Methanol production;171
8.3.3.2;7.3.2. Dimethyl ether production;172
8.3.4;7.4. Thermal, catalytic, and hydrocracking processes;174
8.3.4.1;7.4.1. Tar sand bitumen;175
8.3.4.1.1;7.4.1.1. Conversion to liquids;175
8.3.4.1.2;7.4.1.2. Upgrading tar sand liquids;175
8.3.4.2;7.4.2. Coal;176
8.3.4.2.1;7.4.2.1. Conversion to liquids;176
8.3.4.2.2;7.4.2.2. Upgrading coal liquids;178
8.3.4.3;7.4.3. Oil shale;179
8.3.4.3.1;7.4.3.1. Conversion to liquids;179
8.3.4.3.2;7.4.3.2. Upgrading refining shale oil;180
8.3.4.4;7.4.4. Biomass;182
8.3.4.4.1;7.4.4.1. Conversion to liquids;182
8.3.4.4.2;7.4.4.2. Upgrading bio-oil;183
8.3.5;7.5. Product quality;184
8.3.6;7.6. Conclusions;185
8.4;Chapter 8: Assessing fuels for gasification;190
8.4.1;8.1. Introduction;190
8.4.2;8.2. Sampling;192
8.4.3;8.3. Proximate analysis;192
8.4.3.1;8.3.1. Moisture content;193
8.4.3.2;8.3.2. Volatile matter;193
8.4.3.3;8.3.3. Ash;194
8.4.3.4;8.3.4. Fixed carbon;195
8.4.4;8.4. Calorific value;195
8.4.5;8.5. Ultimate analysis;197
8.4.6;8.6. Physical properties;198
8.4.6.1;8.6.1. Density;199
8.4.6.2;8.6.2. Porosity and surface area;199
8.4.7;8.7. Mechanical properties;200
8.4.7.1;8.7.1. Strength;200
8.4.7.2;8.7.2. Hardness;201
8.4.7.3;8.7.3. Friability;201
8.4.7.4;8.7.4. Grindability;202
8.4.8;8.8. Thermal properties;202
8.4.8.1;8.8.1. Heat capacity;203
8.4.8.2;8.8.2. Thermal conductivity;203
8.4.8.3;8.8.3. Plastic and agglutinating properties;204
8.4.8.4;8.8.4. Agglomerating index;204
8.4.8.5;8.8.5. Free-swelling index;205
8.4.8.6;8.8.6. Ash fusion temperature;205
8.4.9;8.9. Real-time analysis for quality control;206
8.4.9.1;8.9.1. Method evolution;206
8.4.10;8.10. Advantages and limitations;207
9;Part Three: Applications;214
9.1;Chapter 9: Coal gasification processes for synthetic liquid fuel production;216
9.1.1;9.1. Introduction;216
9.1.2;9.2. Coal types and properties;216
9.1.3;9.3. Gas products;218
9.1.3.1;9.3.1. Coal devolatilization;218
9.1.3.2;9.3.2. Char gasification;219
9.1.3.3;9.3.3. Gasification chemistry;219
9.1.3.4;9.3.4. Other process options;220
9.1.3.4.1;9.3.4.1. Hydrogasification;220
9.1.3.4.2;9.3.4.2. Catalytic gasification;221
9.1.3.4.3;9.3.4.3. Plasma gasification;221
9.1.3.5;9.3.5. Process optimization;222
9.1.4;9.4. Products and product quality;223
9.1.4.1;9.4.1. Low Btu gas;223
9.1.4.2;9.4.2. Medium Btu gas;224
9.1.4.3;9.4.3. High Btu gas;225
9.1.4.4;9.4.4. Methane;225
9.1.4.5;9.4.5. Hydrogen;226
9.1.4.6;9.4.6. Other products;227
9.1.5;9.5. Production of chemicals;227
9.1.5.1;9.5.1. Coal tar chemicals;227
9.1.5.2;9.5.2. Fischer-Tropsch chemicals;230
9.1.5.2.1;9.5.2.1. Fischer-Tropsch process;230
9.1.5.2.2;9.5.2.2. Fischer-Tropsch catalysts;231
9.1.5.2.3;9.5.2.3. Product distribution;231
9.1.6;9.6. Advantages and limitations;232
9.2;Chapter 10: Heavy hydrocarbon gasification for synthetic fuel production;236
9.2.1;10.1. Introduction;236
9.2.2;10.2. Heavy feedstocks;237
9.2.2.1;10.2.1. Petroleum residua;238
9.2.2.2;10.2.2. Heavy oil;239
9.2.2.3;10.2.3. Extra heavy oil;240
9.2.2.4;10.2.4. Tar sand bitumen;240
9.2.2.5;10.2.5. Other feedstocks;241
9.2.2.5.1;10.2.5.1. Petroleum coke;241
9.2.2.5.2;10.2.5.2. Solvent deasphalter bottoms;242
9.2.3;10.3. Synthesis gas production;243
9.2.3.1;10.3.1. POX technology;244
9.2.3.1.1;10.3.1.1. Shell gasification process;245
9.2.3.1.2;10.3.1.2. Texaco process;245
9.2.3.1.3;10.3.1.3. Phillips process;246
9.2.3.2;10.3.2. Catalytic partial oxidation;247
9.2.3.3;10.3.3. Steam reforming;247
9.2.3.4;10.3.4. Autothermal reforming;248
9.2.3.5;10.3.5. Combined reforming;248
9.2.4;10.4. Output products;248
9.2.4.1;10.4.1. Gas purification and quality;249
9.2.4.2;10.4.2. Process optimization;250
9.2.5;10.5. Conclusion and future trends;250
9.2.5.1;10.5.1. Other uses of residua;250
9.2.5.2;10.5.2. Gasification in the future refinery;251
9.3;Chapter 11: Biomass gasification for synthetic liquid fuel production;256
9.3.1;11.1. Introduction;256
9.3.2;11.2. Properties of biomass resources;258
9.3.2.1;11.2.1. Background;258
9.3.2.2;11.2.2. Origins of biomass resources;258
9.3.2.3;11.2.3. Properties of biomass materials;258
9.3.3;11.3. Biomass gasification;260
9.3.4;11.4. Biomass gasification properties;263
9.3.4.1;11.4.1. Influence of feedstock characteristics;263
9.3.4.1.1;11.4.1.1. Biomass type;263
9.3.4.1.2;11.4.1.2. Particle size;265
9.3.4.1.3;11.4.1.3. Moisture content;265
9.3.4.2;11.4.2. Gasification parameters;266
9.3.4.2.1;11.4.2.1. Gasification temperature;267
9.3.4.2.2;11.4.2.2. Gasifying agent;268
9.3.4.2.3;11.4.2.3. Gasification pressure;269
9.3.5;11.5. The biomass gasifier;270
9.3.6;11.6. The formation and cracking of tar;272
9.3.6.1;11.6.1. Formation mechanism of tar;272
9.3.6.2;11.6.2. Tar cracking;273
9.3.6.2.1;11.6.2.1. Dolomite;273
9.3.6.2.2;11.6.2.2. Alkali metal and alkaline-earth metals catalysis;274
9.3.6.2.3;11.6.2.3. Nickel-based catalysts;275
9.3.7;11.7. Char gasification;275
9.3.8;11.8. Novel technology for biomass gasification;277
9.3.8.1;11.8.1. Staged gasification;277
9.3.8.2;11.8.2. Sorption-enhanced steam gasification of biomass for H2 production;280
9.3.9;11.9. Mathematical simulation of biomass gasification;282
9.3.9.1;11.9.1. Thermodynamic equilibrium models;282
9.3.9.2;11.9.2. Kinetics models;283
9.3.9.3;11.9.3. Neural networks model;284
9.3.10;11.10. Conclusion and future trends;284
9.4;Chapter 12: Waste gasification for synthetic liquid fuel production;292
9.4.1;12.1. Introduction;292
9.4.2;12.2. Waste types;293
9.4.2.1;12.2.1. Solid waste;294
9.4.2.2;12.2.2. Municipal solid waste;294
9.4.2.3;12.2.3. Industrial solid waste;295
9.4.2.4;12.2.4. Biosolids;297
9.4.2.5;12.2.5. Biomedical waste;297
9.4.3;12.3. Feedstock properties and plant safety;297
9.4.3.1;12.3.1. Feedstock properties;298
9.4.3.2;12.3.2. Plant safety;298
9.4.4;12.4. Fuel production;298
9.4.4.1;12.4.1. Preprocessing;299
9.4.4.2;12.4.2. Gasifier types;301
9.4.4.2.1;12.4.2.1. Counter-current fixed bed gasifier;301
9.4.4.2.2;12.4.2.2. Cocurrent fixed bed gasifier;302
9.4.4.2.3;12.4.2.3. Fluidized-bed gasifier;302
9.4.4.2.4;12.4.2.4. Entrained-flow gasifier;303
9.4.4.2.5;12.4.2.5. Other types;304
9.4.4.3;12.4.3. Process design;304
9.4.4.4;12.4.4. Plasma gasification;306
9.4.5;12.5. Process products;307
9.4.5.1;12.5.1. Synthesis gas;307
9.4.5.2;12.5.2. Carbon dioxide;308
9.4.5.3;12.5.3. Tar;308
9.4.5.4;12.5.4. Particulate matter;310
9.4.5.5;12.5.5. Halogens/acid gases;310
9.4.5.6;12.5.6. Heavy metals;311
9.4.5.7;12.5.7. Alkalis;312
9.4.5.8;12.5.8. Slag;312
9.4.6;12.6. Advantages and limitations;313
9.5;Chapter 13: Gasification for synthetic liquid fuel production;318
9.5.1;13.1. Introduction;318
9.5.2;13.2. Applications and products;319
9.5.2.1;13.2.1. Chemicals and fertilizers;319
9.5.2.2;13.2.2. Substitute natural gas;319
9.5.2.3;13.2.3. Hydrogen for petroleum refining;320
9.5.2.4;13.2.4. Transportation fuels;321
9.5.2.5;13.2.5. Transportation fuels from tar sand bitumen;321
9.5.2.6;13.2.6. Power generation;322
9.5.2.7;13.2.7. Waste-to-energy gasification;323
9.5.2.8;13.2.8. Biomass gasification;324
9.5.3;13.3. Environmental benefits of gasification-based systems;326
9.5.3.1;13.3.1. Carbon dioxide capture;327
9.5.3.2;13.3.2. Lower air emissions;327
9.5.3.3;13.3.3. Solids generation;327
9.5.3.4;13.3.4. Reduced water use;328
9.5.4;13.4. A process for now and the future;328
9.5.4.1;13.4.1. The process;328
9.5.4.2;13.4.2. Refineries of the future;330
9.5.4.3;13.4.3. Economic aspects;331
9.5.4.4;13.4.4. Market outlook;332
9.5.5;13.5. Conclusions;333
10;Index;336


Woodhead publishing series in energy
1 Generating power at high efficiency: Combined cycle technology for sustainable energy production
Eric Jeffs 2 Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment
Edited by Kenneth L. Nash and Gregg J. Lumetta 3 Bioalcohol production: Biochemical conversion of lignocellulosic biomass
Edited by Keith W. Waldron 4 Understanding and mitigating ageing in nuclear power plants: Materials and operational aspects of plant life management (PLiM)
Edited by Philip G. Tipping 5 Advanced power plant materials, design and technology
Edited by Dermot Roddy 6 Stand-alone and hybrid wind energy systems: Technology, energy storage and applications
Edited by John K. Kaldellis 7 Biodiesel science and technology: From soil to oil
Jan C. J. Bart, Natale Palmeri and Stefano Cavallaro 8 Developments and innovation in carbon dioxide (CO2) capture and storage technology Volume 1: Carbon dioxide (CO2) capture, transport and industrial applications
Edited by M. Mercedes Maroto-Valer 9 Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste
Edited by Joonhong Ahn and Michael J. Apted 10 Wind energy systems: Optimising design and construction for safe and reliable operation
Edited by John D. Sørensen and Jens N. Sørensen 11 Solid oxide fuel cell technology: Principles, performance and operations
Kevin Huang and John Bannister Goodenough 12 Handbook of advanced radioactive waste conditioning technologies
Edited by Michael I. Ojovan 13 Membranes for clean and renewable power applications
Edited by Annarosa Gugliuzza and Angelo Basile 14 Materials for energy efficiency and thermal comfort in buildings
Edited by Matthew R. Hall 15 Handbook of biofuels production: Processes and technologies
Edited by Rafael Luque, Juan Campelo and James Clark 16 Developments and innovation in carbon dioxide (CO2) capture and storage technology Volume 2: Carbon dioxide (CO2) storage and utilisation
Edited by M. Mercedes Maroto-Valer 17 Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture
Edited by Ligang Zheng 18 Small and micro combined heat and power (CHP) systems: Advanced design, performance, materials and applications
Edited by Robert Beith 19 Advances in clean hydrocarbon fuel processing: Science and technology
Edited by M. Rashid Khan 20 Modern gas turbine systems: High efficiency, low emission, fuel flexible power generation
Edited by Peter Jansohn 21 Concentrating solar power technology: Principles, developments and applications
Edited by Keith Lovegrove and Wes Stein 22 Nuclear corrosion science and engineering
Edited by Damien Féron 23 Power plant life management and performance improvement
Edited by John E. Oakey 24 Electrical drives for direct drive renewable energy systems
Edited by Markus Mueller and Henk Polinder 25 Advanced membrane science and technology for sustainable energy and environmental applications
Edited by Angelo Basile and Suzana Pereira Nunes 26 Irradiation embrittlement of reactor pressure vessels (RPVs) in nuclear power plants
Edited by Naoki Soneda 27 High temperature superconductors (HTS) for energy applications
Edited by Ziad Melhem 28 Infrastructure and methodologies for the justification of nuclear power programmes
Edited by Agustín Alonso 29 Waste to energy conversion technology
Edited by Naomi B. Klinghoffer and Marco J. Castaldi 30 Polymer electrolyte membrane and direct methanol fuel cell technology Volume 1: Fundamentals and performance of low temperature fuel cells
Edited by Christoph Hartnig and Christina Roth 31 Polymer electrolyte membrane and direct methanol fuel cell technology Volume 2: In situ characterization techniques for low temperature fuel cells
Edited by Christoph Hartnig and Christina Roth 32 Combined cycle systems for near-zero emission power generation
Edited by Ashok D. Rao 33 Modern earth buildings: Materials, engineering, construction and applications
Edited by Matthew R. Hall, Rick Lindsay and Meror Krayenhoff 34 Metropolitan sustainability: Understanding and improving the urban environment
Edited by Frank Zeman 35 Functional materials for sustainable energy applications
Edited by John A. Kilner, Stephen J. Skinner, Stuart J. C. Irvine and Peter P. Edwards 36 Nuclear decommissioning: Planning, execution and international experience
Edited by Michele Laraia 37 Nuclear fuel cycle science and engineering
Edited by Ian Crossland 38 Electricity transmission, distribution and storage systems
Edited by Ziad Melhem 39 Advances in biodiesel production: Processes and technologies
Edited by Rafael Luque and Juan A. Melero 40 Biomass combustion science, technology and engineering
Edited by Lasse Rosendahl 41 Ultra-supercritical coal power plants: Materials, technologies and optimisation
Edited by Dongke Zhang 42 Radionuclide behaviour in the natural environment: Science, implications and lessons for the nuclear industry
Edited by Christophe Poinssot and Horst Geckeis 43 Calcium and chemical looping technology for power generation and carbon dioxide (CO2) capture: Solid oxygen- and CO2-carriers
Paul Fennell and E. J. Anthony 44 Materials’ ageing and degradation in light water reactors: Mechanisms, and management
Edited by K. L. Murty 45 Structural alloys for power plants: Operational challenges and high-temperature materials
Edited by Amir Shirzadi and Susan Jackson 46 Biolubricants: Science and technology
Jan C. J. Bart, Emanuele Gucciardi and Stefano Cavallaro 47 Advances in wind turbine blade design and materials
Edited by Povl Brøndsted and Rogier P. L. Nijssen 48 Radioactive waste management and contaminated site clean-up: Processes, technologies and international experience
Edited by William E. Lee, Michael I. Ojovan, Carol M. Jantzen 49 Probabilistic safety assessment for optimum nuclear power plant life management (PLiM): Theory and application of reliability analysis methods for major power plant...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.