Maas / Rademacher / Titkos | Optimal Transport on Quantum Structures | E-Book | sack.de
E-Book

E-Book, Englisch, Band 29, 321 Seiten, eBook

Reihe: Bolyai Society Mathematical Studies

Maas / Rademacher / Titkos Optimal Transport on Quantum Structures


1. Auflage 2024
ISBN: 978-3-031-50466-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 29, 321 Seiten, eBook

Reihe: Bolyai Society Mathematical Studies

ISBN: 978-3-031-50466-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



The flourishing theory of classical optimal transport concerns mass transportation at minimal cost. This book introduces the reader to optimal transport on quantum structures, i.e., optimal transportation between quantum states and related non-commutative concepts of mass transportation. It contains lecture notes on classical optimal transport and Wasserstein gradient flowsdynamics and quantum optimal transportquantum couplings and many-body problemsquantum channels and qubitsThese notes are based on lectures given by the authors at the "Optimal Transport on Quantum Structures" School held at the Erdös Center in Budapest in the fall of 2022. The lecture notes are complemented by two survey chapters presenting the state of the art in different research areas of non-commutative optimal transport.
Maas / Rademacher / Titkos Optimal Transport on Quantum Structures jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Preface.- Chapter 1. An Introduction to Optimal Transport and Wasserstein Gradient Flows by Alessio Figalli.- Chapter 2. Dynamics and Quantum Optimal Transport:Three Lectures on Quantum Entropy and Quantum Markov Semigroups by Eric A. Carlen.- Chapter 3. Quantum Couplings and Many-body Problems by Francois Golse.- Chapter 4. Quantum Channels and Qubits by Giacomo De Palma and Dario Trevisan.- Chapter 5. Entropic Regularised Optimal Transport in a Noncommutative Setting by Lorenzo Portinale.- Chapter 6. Logarithmic Sobolev Inequalities for Finite Dimensional Quantum Markov Chains by Cambyse Rouzé.


Jan Maas is Professor at the Institute of Science and Technology Austria (ISTA). He holds a PhD degree from TU Delft and he was a post-doctoral researcher at the University of Warwick and the University of Bonn. He received an ERC Starting Grant in 2016. His research interests are in analysis and probability theory. Simone Rademacher is a researcher in mathematical physics. She received her doctoral degree from the University of Zurich and was a post-doctoral researcher at the Institute of Science and Technology Austria (ISTA). Currently, she is an interim professor at the Ludwig-Maximilians University Munich (LMU). Tamás Titkos is a researcher at the HUN-REN Alfréd Rényi Institute of Mathematics and an associate professor at Corvinus University of Budapest. He holds a PhD degree from Eötvös Loránd University. He is the recipient of the Youth Award and the Alexits Prize of the Hungarian Academy of Sciences. His research interest is in functional analysis. Dániel Virosztek is a research fellow leading the Optimal Transport Research Group of the Rényi Institute. He got his Ph.D. degree in 2016 at TU Budapest and spent four years at the IST Austria as a postdoctoral researcher. He returned to Hungary with a HAS-Momentum grant in 2021. He is working on the geometry of classical and quantum optimal transport.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.