MacIntyre / Ma / Zhao | The 2020 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy | Buch | 978-3-030-62745-4 | sack.de

Buch, Englisch, Band 1283, 863 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1329 g

Reihe: Advances in Intelligent Systems and Computing

MacIntyre / Ma / Zhao

The 2020 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy

SPIoT-2020, Volume 2
1. Auflage 2021
ISBN: 978-3-030-62745-4
Verlag: Springer International Publishing

SPIoT-2020, Volume 2

Buch, Englisch, Band 1283, 863 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1329 g

Reihe: Advances in Intelligent Systems and Computing

ISBN: 978-3-030-62745-4
Verlag: Springer International Publishing


This book presents the proceedings of The 2020 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy (SPIoT-2020), held in Shanghai, China, on November 6, 2020. Due to the COVID-19 outbreak problem, SPIoT-2020 conference was held online by Tencent Meeting. It provides comprehensive coverage of the latest advances and trends in information technology, science and engineering, addressing a number of broad themes, including novel machine learning and big data analytics methods for IoT security, data mining and statistical modelling for the secure IoT and machine learning-based security detecting protocols, which inspire the development of IoT security and privacy technologies. The contributions cover a wide range of topics: analytics and machine learning applications to IoT security; data-based metrics and risk assessment approaches for IoT; data confidentiality and privacy in IoT; and authentication and access control for data usage in IoT. Outlining promising future research directions, the book is a valuable resource for students, researchers and professionals and provides a useful reference guide for newcomers to the IoT security and privacy field.

MacIntyre / Ma / Zhao The 2020 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Session 5: Data-driven co-design of communication, computing and control for IoT security

Design of a Force Balance Geophone Utilizing Bandwidth Extension and Data Acquisition Interface

Application of 3ds Max Technology in Archaeology

The Application of Virtual Reality Technology in ESP Teaching

Application of Simulation Method Based on Computer Bionic Design

The Implementation and Application of Computer Simulation Technology in PE Teaching

Construction of College Communities in the New Media Based on Network Environment

Political and Ideological Personnel Management Mode Based on Computer Network

Analysis of Mapping Knowledge Domain on Health and Wellness Tourism in the Perspective of Cite Space

Application of Smart Retail Mode in Suning.Com

Construction and Development of High-tech Smart City

Design and Implementation of Self-Service Tourism Management Information System Based on B/S Architecture

Chinese Culture Penetration in Teaching Chinese as a Foreign Language in the Era of Mobile Internet

Application and Outlook of Digital Media Technology in Smart Tourism

Accounting Informationization in Computer Network Environment

Mobile Phone GPS and Sensor Technology in College Students' Extracurricular Exercises

Design of Networking Network Model Based on Network Function Virtualization Technology

Intelligent Media Technology Empowered Brand Communication of Chinese Intangible Cultural Heritage

Construction Strategy of Smart English Teaching Platform from the Perspective of "Internet + Education"

Online Writing Effectiveness under the Blended Teaching Mode of Moscotech APP

A Narrative Environment Model for the Sustainability of Intangible Cultural Heritage under the 5G Era

Application Study of VPN on the Network of Hydropower Plant

Prediction of Technology Trend of Educational Robot Industry Based On Patent Map Analysis

Coal



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.