E-Book, Englisch, 344 Seiten
Madani Debugging Machine Learning Models with Python
1. Auflage 2023
ISBN: 978-1-80020-113-2
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 0 - No protection
Develop high-performance, low-bias, and explainable machine learning and deep learning models
E-Book, Englisch, 344 Seiten
ISBN: 978-1-80020-113-2
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 0 - No protection
No detailed description available for "Debugging Machine Learning Models with Python".
Fachgebiete
Weitere Infos & Material
Table of Contents - Beyond Code Debugging
- Machine Learning Life Cycle
- Debugging toward Responsible AI
- Detecting Performance and Efficiency Issues in Machine Learning Models
- Improving the Performance of Machine Learning Models
- Interpretability and Explainability in Machine Learning Modeling
- Decreasing Bias and Achieving Fairness
- Controlling Risks Using Test-Driven Development
- Testing and Debugging for Production
- Versioning and Reproducible Machine Learning Modeling
- Avoiding and Detecting Data and Concept Drifts
- Going Beyond ML Debugging with Deep Learning
- Advanced Deep Learning Techniques
- Introduction to Recent Advancements in Machine Learning
- Correlation versus Causality
- Security and Privacy in Machine Learning
- Human-in-the-Loop Machine Learning