E-Book, Englisch, 536 Seiten, Web PDF
Manaa Chemistry at Extreme Conditions
1. Auflage 2005
ISBN: 978-0-08-045699-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 536 Seiten, Web PDF
ISBN: 978-0-08-045699-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Chemistry at Extreme Conditions covers those chemical processes that occur in the pressure regime of 0.5-200 GPa and temperature range of 500-5000 K and includes such varied phenomena as comet collisions, synthesis of super-hard materials, detonation and combustion of energetic materials, and organic conversions in the interior of planets. The book provides an insight into this active and exciting field of research. Written by top researchers in the field, the book covers state of the art experimental advances in high-pressure technology, from shock physics to laser-heating techniques to study the nature of the chemical bond in transient processes. The chapters have been conventionally organised into four broad themes of applications: biological and bioinorganic systems; Experimental works on the transformations in small molecular systems; Theoretical methods and computational modeling of shock-compressed materials; and experimental and computational approaches in energetic materials research.
* Extremely practical book containing up-to-date research in high-pressure science
* Includes chapters on recent advances in computer modelling
* Review articles can be used as reference guide
Autoren/Hrsg.
Weitere Infos & Material
1;Cover;1
2;Preface;5
3;Table of Contents;7
4;Pressure - Temperature Effects on Protein Conformational States;15
4.1;Introduction;15
4.2;Life at Extreme Conditions;16
4.3;The Protein Volume;18
4.3.1;Cavities and Hydration;18
4.3.1.1;Cavities;19
4.3.1.2;Hydration;20
4.3.2;Compressibility;20
4.3.3;Thermal Expansion;22
4.3.4;Heat Capacity;23
4.3.5;The Gruneisen Parameter;24
4.3.6;Intermolecular Interactions in Water;25
4.4;Proteins: Stability Conditions;25
4.4.1;The Phase Diagram;25
4.4.2;Pressure Unfolding and Chemical Unfolding;29
4.5;Water Soluble Polymers as Model System;30
4.6;Protein-Protein Interactions;30
4.6.1;Crystallization;31
4.6.2;Oligomerization;32
4.6.3;Aggregation and Fibril Formation;32
4.7;Other Biopolymers;34
4.7.1;Starch;34
4.7.2;Nucleic Acids;35
4.7.3;Phospholipids;35
4.8;Cellular Processes and Organisms;36
4.9;Conclusion: Specificity of Pressure Effects?;37
4.10;References;37
5;High Pressure Effects in Molecular Bioscience;43
5.1;Introduction;43
5.2;Exploitation of Pressure Effects in Molecular Biology and Biotechnology;45
5.3;Experimental Techniques fof High Pressure Research;48
5.3.1;X-Ray- and Neutron Scattering-Techniques and Theoretical Background;48
5.3.1.1;Partially Ordered Systems: Membrane and Lipid Mesophase Diffraction Patterns;49
5.3.1.2;SAXS Studies by Solutions of Biological Macromolecules (Proteins);52
5.3.2;High Pressure FT-IR Spectroscopy of Proteins;52
5.3.3;High-Pressure NMR Spectroscopy;53
5.4;Pressure Effects on Biomolecular Systems;55
5.4.1;Pressure Effects on Nucleic Acids;55
5.4.2;Lipid Mesophases and Model Biomembrane Systems upon Pressurization;56
5.4.2.1;Single-Component Lipid Systems;59
5.4.2.2;More-Component Lipid Mixtures;65
5.4.2.3;Effect of Additives;69
5.4.2.4;Kinetics of Phase Transformations in Lipid Systems;76
5.4.3;Pressure Effects on Protein Structure and Stability;79
5.5;Conclusions;91
5.6;Abbreviations;92
5.7;Acknowledgements;93
5.8;References;93
6;Molecules to Microbes: In-Situ Studies of Organic Systems Under Hydrothermal Conditions;97
6.1;Introduction;97
6.2;Experimental Techniques;98
6.2.1;Hydrothermal Diamond Cells;98
6.2.2;Measurement of Temperature and Pressure;99
6.2.3;In-Situ Raman Spectroscopy;100
6.3;Methane Hydrates: Phase Transformation and Equilibria;100
6.3.1;Overview;100
6.3.2;In-Situ Observations;101
6.3.3;Constraints on Phase Relations;105
6.4;Citric Acid-Water System;105
6.4.1;Hydrothermal Organic Synthesis;105
6.4.2;In-Situ Raman Spectroscopy;108
6.4.3;Chromatographic Analysis;109
6.4.4;Implications for Synthesis and Pathways;110
6.5;Formic Acid - Water - FeS System;111
6.5.1;Metal Sulfides as Catalysts;111
6.5.2;High P-T Experiments;113
6.6;High Pressure Microbiology;113
6.6.1;Monitoring Viability under Extreme Conditions;113
6.6.2;Experimental Overview;116
6.6.3;In-Situ Observations above 1 GPa;119
6.6.4;Implications for Adaptation under Pressure;120
6.7;Summary;120
6.8;Acknowledgments;120
6.9;References;121
7;Application of High Pressure in Inorganic and Bioinorganic Chemistry;123
7.1;Introduction;123
7.1.1;Background and Literature;124
7.1.2;Basic Principles of Kinetics at High Pressure;125
7.2;Experimental Methods;127
7.3;Inorganic Reactions;131
7.3.1;Solvent Exchange;131
7.3.2;Ligand Substitution;137
7.3.2.1;Iron;137
7.3.2.2;Cobalt;138
7.3.2.3;Ruthenium;142
7.3.2.4;Rhodium;142
7.3.2.5;Palladium;143
7.3.2.6;Rhenium;144
7.3.2.7;Platinum;145
7.3.3;Redox Reactions;149
7.3.4;Reactions of Nitric Oxide;155
7.4;Biorganic Reactions;158
7.5;Other Relevant Reactions and Effects of Pressure;165
7.6;Theoretical Studies;168
7.7;Concluding Remarks;171
7.8;Acknowledgements;172
7.9;References;172
8;High Pressure Materials Research: Novel Extended Phases of Molecular Triatomics;179
8.1;High Pressure Materials Research;179
8.1.1;Fundamental Principles of High Pressure Chemistry;181
8.1.2;Generalized Phase Diagram of Simple Molecule;182
8.2;Experimental Tools for High Pressure Research;184
8.3;Examples of Triatomic Molecular Solids;185
8.3.1;Carbon Dioxide: CO2;185
8.3.1.1;Molecular Phase I and III;185
8.3.1.2;Nonmolecular Extended Phase V;188
8.3.1.3;Intermediate Phases II and IV;190
8.3.1.4;Ionic Solids;191
8.3.1.5;Dissociative Solids;192
8.3.2;Nitrous Oxide: an Electronic Analog;192
8.3.2.1;The Phase Diagram of N20;193
8.3.2.2;Ionization and Dissociation;194
8.3.2.3;Novel Ionic Crystal;194
8.3.3;Carbon Disulfide: a Periodic Analog;196
8.3.4;Silicon Dioxide: a Periodic Analog;197
8.4;Concluding Remarks;198
8.5;Acknowledgement;199
8.6;References;200
9;Nitrogen-Containing Molecular Systems at High Pressures and Temperature;203
9.1;Introduction;203
9.2;Experimental Capabilities;203
9.2.1;Raman Spectroscopy;205
9.2.2;Infrared Spectroscopy;205
9.2.3;X-Ray Diffraction;206
9.2.4;Variable Temperature;206
9.3;High-Pressure Studies of Nitrogen-Containing Compounds;207
9.3.1;Nitrogen: Diatomic, Polyatomic, and Polymeric;207
9.3.2;Nitrogen Oxides: Prevalence of NO+NO3-;209
9.3.2.1;Raman Spectra and Phase Transitions;210
9.3.2.2;IR Spectra and Ionicity;213
9.3.2.3;X-Ray Diffraction and Equations of State;216
9.3.2.4;Stability Diagram;218
9.3.3;Nitrogen Oxide: Molecular N2O4 Revisited;221
9.3.3.1;Vibrational Spectroscopy;221
9.3.3.2;X-Ray Diffraction;223
9.3.3.3;Transformation Mechanisms;223
9.3.4;Further Pursuit of Polynitrogen;225
9.3.4.1;Pentanitrogen Hexafluoroantimonate (N5SbF6);225
9.3.4.2;Sodium Azide (NaN3);228
9.4;Thematic Perpectives and Prospects;231
9.5;Acknowledgements;232
9.6;References;233
10;Aqueous Chemistry in the Diamond Anvil Cell up to and Beyond the Critical Point of Water;237
10.1;Introduction;237
10.2;The Hydrothermal Diamond Anvil Cell (HDAC);239
10.3;Sample Preparation;241
10.4;Pressure and Temperature Measurement;241
10.5;Analytical Techniques;243
10.5.1;Visual;243
10.5.2;X-Ray Diffraction (XRD);244
10.5.3;X-Ray Fluorescence (XRF);244
10.5.4;X-Ray Absorption Fine Structure (XAFS);244
10.5.5;Raman Spectroscopy;247
10.5.6;Infrared Absorption;247
10.5.7;Luminescence;247
10.6;Examples;247
10.6.1;EOS of Water;247
10.6.2;Montmorillonite;247
10.6.3;Ikaite;248
10.6.4;Silicate Melts and Solutions under Hydrothermal Conditions;248
10.6.5;Solubility and Leaching under Hydrothermal Conditions;249
10.6.6;Fluid Inclusion Studies;249
10.6.7;Radiation-Induced Small Cu Particle Cluster Formation in Aqueous CuCl2;250
10.6.8;Hydration Structure of Aqueous La3+ up to 300 °C and 160 MPa;250
10.6.9;Structure of Yb3+ Aqua ion and Chloro Complexes in Aqueous Solutions up to 500 °C and 270 Mpa;250
10.6.10;Zinc Halide Solutions and Evidence for Hydrogen Bond Breaking in Aqueous Solutions Near the Critical Point;251
10.6.11;Transformations in Methane Hydrates;251
10.6.12;New H2O Ice Form;251
10.6.13;Organic Material;252
10.6.14;Biological Applications of the HDAC;252
10.7;Future Developments;252
10.8;References;253
11;Solid Nitrogen at Extreme Conditions of High Pressure and Temperature;255
11.1;Abstract;255
11.2;Introduction;255
11.3;Experimental;258
11.4;Orientation Order in Molecular Phases;259
11.5;New Classes of Molecular Phases;265
11.6;Polumeric Nitrogen;271
11.7;Acknowledgement;280
11.8;References;280
12;Non-Equilibrium Molecular Dynamics Studies of Shock and Detonation Processes in Energetic Materials;283
12.1;Introduction;283
12.2;A Short History of Reactive Potentials;284
12.2.1;Reactive Bond-Order Potentials;284
12.2.2;Transferable Reactive Force Fields: ReaxFF;286
12.2.2.1;Key Concepts and Total Energy Expression;286
12.2.2.2;Covalent Interactions: Bond Order Calculations;287
12.2.2.3;Electrostatic Interactions with Self-Consistent, Variable Charges;288
12.2.2.4;Van Der Waals Interactions;288
12.2.2.5;Force Field Optimization;288
12.3;Shock & Detonation Behavior of Perfect Energetic Crystals;289
12.3.1;Non-Equilibrium Molecular Dynamics (NEMD) Shockwave Simulations;289
12.3.2;REBO AB Shock Hugoniot;292
12.3.3;Failure Diameter in Cylindrical Samples;294
12.3.4;Initial Chemical Reaction Events in RDX Perfect Crystals under Shock Loading;297
12.4;Shock & Detonation Behavior of Defective Crystals;299
12.4.1;How do Hotspots Happen? The View from the Atomic Scale;299
12.4.2;Initial Chemical Events in RDX Crystals with Planar Gaps;301
12.5;Thermal Decomposition of RDX;304
12.5.1;Reactive MD Simulations;304
12.5.2;Energetics of Decomposition;304
12.5.3;Time Evolution of Products;305
12.6;Summary and Conclusions;307
12.7;Acknowledgements;308
12.8;References;309
13;A Multi-Scale Approach to Molecular Dynamics Simulations of Shock Waves;311
13.1;Introduction;311
13.2;Multi-Scale Model Derivation;312
13.3;Stability of Simulated Waves;317
13.4;Neglect of Thermal Transport;319
13.5;Computational Details;321
13.5.1;Adherence to Constraints;321
13.5.2;Choice of Parameter Q;325
13.5.3;Initialization Bias for Compressive Shocks;327
13.5.4;Computational Cell Size;327
13.5.5;Simulation Duration;328
13.6;Treatment of Multiple Shock Waves;329
13.6.1;Time-Dependence of the p-v Space Path;332
13.7;Application to a Lennard-Jones Crystal;335
13.8;Application to Crystalline Silicon;335
13.9;Application to Nitromethane;337
13.10;Conclusion;339
13.11;References;339
14;Plastic Deformation in High Pressure, High Strain Rate Shocked Materials: Dislocation Dynamics Analyses;341
14.1;Introduction;341
14.2;Mutiscale Dislocation Dynamic Plasticity (MDDP);343
14.3;Dislocation-Shock Waves Interaction: Simulation-Setup;347
14.4;Results and Discussion;350
14.4.1;Wave Propagation Characteristics;350
14.4.2;Dislocation Histories;354
14.4.3;Dislocation Microstructure;357
14.4.4;Mesh Sensitivity Analysis;361
14.4.5;Calculations of Shock Wave Parameters;361
14.5;Summary and Concluding Reamarks;363
14.6;Acknowledgement;363
14.7;References;363
15;Shock-Induced Chemistry in Hydrocarbon Molecular Solids;365
15.1;Introduction;365
15.1.1;Background;365
15.1.2;Potential Energy Function;366
15.2;Simulation Results;367
15.2.1;Methane;368
15.2.2;Acetylene;372
15.2.3;Anthracene;376
15.3;Conclusion;380
15.4;Acknowledgement;381
15.5;References;381
16;At the Confluence of Experiment and Simulation: Ultrafast Laser Spectroscopic Studies of Shock Compressed Energetic Materials;383
16.1;Abstract;383
16.2;Introduction;383
16.3;Sample Preparation and Experimental Design;385
16.4;Controlled Shock Production using Ultrafast Lasers;387
16.5;Ultrafast Interferometry;391
16.6;Effects of Thin Film Interference on Ultrafast Interferometry;394
16.7;Use of Dynamic Ellipsometry to Measure Shock States;396
16.8;Thin Film Interference Effects on Infrared Reflection Sepctra;398
16.9;Ultrafast Infrared Absorption;402
16.10;Conclusions;407
16.11;Acknowledgment;408
16.12;References;408
17;The Equation of State and Chemistry at Extreme Conditions: Applications to Detonation Products;413
17.1;Introduction;413
17.2;High Pressure Experimental Methods;413
17.3;ISLS Experiments;416
17.4;Raman and FTIR Experiments;422
17.5;Computational Methods;422
17.5.1;Introduction to Computations;424
17.6;Fluid Equations of State;427
17.7;Extreme Chemistry;432
17.8;Gibbs Free Energy Equation of State;437
17.9;Conclusions;439
17.10;Acknowledgements;439
17.11;References;440
18;Theoretical and Computational Studies of Energetic Salts;445
18.1;Abstract;445
18.2;Introduction;445
18.2.1;Solid-Phase Ionic Energetic Materials;445
18.2.1.1;Crystalline Phases and Structural Properties;445
18.2.1.2;Thermal Stability and Dissociation Mechanisms;452
18.2.2;Liquid-Phase Ionic Energetic Materials;455
18.2.3;General Remarks on Theoretical Simulations of Ionic Energetic Systems;455
18.3;Computational Methods as Applied to Simulations of Ionic Energetic Materials;456
18.3.1;General Areas of Practical Impact for Atomistic Computational Studies;456
18.3.2;Quantum Chemistry Calculations: Applications to Dinitramide, Ammonium Dinitramide, and Ammonium Perchlorate;457
18.3.3;Quantum Chemical Calculations of Proton Transfer in AN, ADN, and HAN Clusters;462
18.3.4;Quantum Chemistry Calculations Applied to Solid-Phase Ionic Energetic Materials;464
18.3.4.1;General Aspects;464
18.3.4.2;Structural and Electronic Properties;465
18.3.4.3;Pressure-Induced Effects;466
18.3.4.4;Transport Properties;466
18.4;Classical Simulations of Salts;468
18.4.1;General Aspects;468
18.4.2;Atomistic Models for Salts;470
18.4.2.1;Rigid-Ion Models;470
18.4.2.2;Flexible-Ion Models;472
18.5;Simulations of Phase Transitions in Energetic Salts;474
18.5.1;Melting;474
18.5.2;Solid-State Phase Transitions;479
18.6;Summary and Suggestions for Future Developments;480
18.7;References;481
19;Computational Determination of the Energetics of Boron and Aluminum Combustion Reactions;487
19.1;Background;487
19.2;Procedure;489
19.3;Results;489
19.3.1;General;489
19.3.2;Heats of Formation, DeltaHf°(298 K);494
19.3.3;Heats of Reaction;496
19.3.4;Free Energy Changes;498
19.3.5;Equilibrium Constants;500
19.3.6;Reaction Mechanisms;502
19.3.6.1;Reaction 1;502
19.3.6.2;Reaction 5;502
19.3.6.3;Reaction 6;502
19.3.6.4;Reaction 8;502
19.3.6.5;Reaction 11;502
19.3.6.6;Reaction 13;502
19.3.6.7;Reaction 14;503
19.3.6.8;Reaction 16;503
19.4;Summary;504
19.5;Acknowledgements;505
19.6;References;505
20;Chemistry of Detonation Waves in Condensed Phase Explosives;509
20.1;Introduction;509
20.2;Neznd Theory of Detonation;510
20.3;Atomistic Studies of Early Chemistry in Hot Dense Media;513
20.4;Relaxation Toward Equilibrium after Chemical Reaction;519
20.5;The Ignition and Growth Model of Detonation;520
20.6;Future Research;526
20.7;Acknowledgments;528
20.8;References;528
21;Index;531




