Mansour / Annaby | q-Fractional Calculus and Equations | Buch | 978-3-642-30897-0 | sack.de

Buch, Englisch, Band 2056, 318 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 517 g

Reihe: Lecture Notes in Mathematics

Mansour / Annaby

q-Fractional Calculus and Equations


2012
ISBN: 978-3-642-30897-0
Verlag: Springer

Buch, Englisch, Band 2056, 318 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 517 g

Reihe: Lecture Notes in Mathematics

ISBN: 978-3-642-30897-0
Verlag: Springer


This nine-chapter monograph introduces a rigorous investigation of q-difference operators in standard and fractional settings. It starts with elementary calculus of q-differences and integration of Jackson’s type before turning to q-difference equations. The existence and uniqueness theorems are derived using successive approximations, leading to systems of equations with retarded arguments. Regular  q-Sturm–Liouville theory is also introduced; Green’s function is constructed and the eigenfunction expansion theorem is given. The monograph also discusses some integral equations of Volterra and Abel type, as introductory material for the study of fractional q-calculi. Hence fractional q-calculi of the types Riemann–Liouville; Grünwald–Letnikov;  Caputo;  Erdélyi–Kober and Weyl are defined analytically. Fractional q-Leibniz rules with applications  in q-series are  also obtained with rigorous proofs of the formal  results of  Al-Salam-Verma, which remained unproved for decades. In working towards the investigation of q-fractional difference equations; families of q-Mittag-Leffler functions are defined and their properties are investigated, especially the q-Mellin–Barnes integral  and Hankel contour integral representation of  the q-Mittag-Leffler functions under consideration,  the distribution, asymptotic and reality of their zeros, establishing q-counterparts of Wiman’s results. Fractional q-difference equations are studied; existence and uniqueness theorems are given and classes of Cauchy-type problems are completely solved in terms of families of q-Mittag-Leffler functions. Among many q-analogs of classical results and concepts, q-Laplace, q-Mellin and q-Fourier transforms are studied and their applications are investigated.

Mansour / Annaby q-Fractional Calculus and Equations jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1 Preliminaries.- 2 q-Difference Equations.- 3 q-Sturm Liouville Problems.- 4 Riemann–Liouville q-Fractional Calculi.- 5 Other q-Fractional Calculi.- 6 Fractional q-Leibniz Rule and Applications.- 7 q-Mittag–Leffler Functions.- 8 Fractional q-Difference Equations.- 9 Applications of q-Integral Transforms.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.