Mantoro / Lee / Ayu | Neural Information Processing | E-Book | sack.de
E-Book

E-Book, Englisch, Band 13110, 705 Seiten, eBook

Reihe: Lecture Notes in Computer Science

Mantoro / Lee / Ayu Neural Information Processing

28th International Conference, ICONIP 2021, Sanur, Bali, Indonesia, December 8–12, 2021, Proceedings, Part III
1. Auflage 2021
ISBN: 978-3-030-92238-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

28th International Conference, ICONIP 2021, Sanur, Bali, Indonesia, December 8–12, 2021, Proceedings, Part III

E-Book, Englisch, Band 13110, 705 Seiten, eBook

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-030-92238-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



The four-volume proceedings LNCS 13108, 13109, 13110, and 13111 constitutes the proceedings of the 28th International Conference on Neural Information Processing, ICONIP 2021, which was held during December 8-12, 2021. The conference was planned to take place in Bali, Indonesia but changed to an online format due to the COVID-19 pandemic. The total of 226 full papers presented in these proceedings was carefully reviewed and selected from 1093 submissions. The papers were organized in topical sections as follows:Part I: Theory and algorithms; Part II: Theory and algorithms; human centred computing; AI and cybersecurity;Part III: Cognitive neurosciences; reliable, robust, and secure machine learning algorithms; theory and applications of natural computing paradigms; advances in deep and shallow machine learning algorithms for biomedical data and imaging; applications;  Part IV: Applications.
Mantoro / Lee / Ayu Neural Information Processing jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Cognitive Neurosciences.- A Novel Binary BCI Systems Based on Non-oddball Auditory and Visual Paradigms.- A Just-In-Time Compilation Approach for Neural Dynamics Simulation.- STCN-GR: Spatial-Temporal Convolutional Networks for Surface-Electromyography-Based Gesture Recognition.- Gradient descent learning algorithm based on spike selection mechanism for multilayer spiking neural networks.- Learning to Coordinate via Multiple Graph Neural Networks.- A Reinforcement Learning Approach for Abductive Natural Language Generation.- DFFCN: Dual Flow Fusion Convolutional Network for Micro Expression Recognition.- AUPro: Multi-label Facial Action Unit Proposal Generation for Sequence-level Analysis.- Deep kernelized network for fine-grained recognition.- Semantic Perception Swarm Policy with Deep Reinforcement Learning.- Reliable, Robust, and Secure Machine Learning Algorithms Open-Set Recognition with Dual Probability Learning.- How Much Do Synthetic Datasets Matter In Handwritten Text Recognition.- PCMO: Partial Classification from CNN-Based Model Outputs.- Multi-branch Fusion Fully Convolutional Network for Person Re-Identification.- Fast Organization of Objects Spatial Positions in Manipulator Space from Single RGB-D Camera.- EvoBA: An Evolution Strategy as a Strong Baseline for Black-Box Adversarial Attacks.- A Novel Oversampling Technique for Imbalanced Learning Based on SMOTE and Genetic Algorithm.- Dy-Drl2Op: Learning Heuristics for TSP on the Dynamic Graph via Deep Reinforcement Learning.- Multi-label classification of hyperspectral images based on label-specific feature fusion.- A Novel Multi-Scale Key-Point Detector Using Residual Dense Block and Coordinate Attention.- Alleviating Catastrophic Interference in Online Learning via Varying Scale of Backward Queried Data.- Construction and Reasoning for Interval-Valued EBRB Systems.- Theory and Applications of Natural Computing Paradigms.- Brain-mimetic Kernel: A Kernel Constructed from Human fMRI Signals Enabling aBrain-mimetic Visual Recognition Algorithm.- Predominant Sense Acquisition with a Neural Random Walk Model.- Processing-response dependence on the on-chip readout positions in spin-wave reservoir computing.- Advances in deep and shallow machine learning algorithms for biomedical data and imaging.- A Multi-Task Learning Scheme for Motor Imagery Signal Classification.- An End-to-End Hemisphere Discrepancy Network for Subject-Independent Motor Imagery Classification.- Multi-domain Abdomen Image Alignment Based on Joint Network of Registration and Synthesis.- Coordinate Attention Residual Deformable U-Net for Vessel Segmentation.- Gated Channel Attention Network for Cataract Classification on AS-OCT Image.- Overcoming Data Scarcity for Coronary Vessel Segmentation Through Self-Supervised Pre-Training.- Self-Attention Long-Term Dependency Modelling in Electroencephalography Sleep Stage Prediction.- ReCal-Net: Joint Region-Channel-Wise Calibrated Network for Semantic Segmentation in Cataract Surgery Videos.- Enhancing Dermoscopic Features Classification in Images Using Invariant Dataset Augmentation and Convolutional Neural Networks.- Ensembles of Randomized Neural Networks for Pattern-based Time Series Forecasting.- Grouped Echo State Network with Late Fusion for Speech Emotion Recognition.- Applications.- MPANet: Multi-level Progressive Aggregation Network for Crowd Counting.- AFLLC: A Novel Active Contour Model based on Adaptive Fractional Order Differentiation and Local Linearly Constrained Bias Field.- DA-GCN: A Dependency-Aware Graph Convolutional Network for Emotion Recognition in Conversations.- Semi-Supervised Learning with Conditional GANs for Blind Generated Image Quality Assessment.- Uncertainty-Aware Domain Adaptation for Action Recognition.- Free-Form Image Inpainting with Separable Gate Encoder-decoder Network.- BERTDAN: Question-Answer Dual Attention Fusion Networks With Pre-trained Models for Answer Selection.- Rethinking the Effectiveness of Selective Attention in Neural Networks.- An Attention Method to Introduce Prior Knowledge in Dialogue State Tracking.- Effect of Input Noise Dimension in GANs.- Wiper Arm Recognition using YOLOv4.- Context Aware Joint Modeling of Domain Classification, Intent Detection and Slot Filling with Zero-shot Intent Detection Approach.- Constrained Generative Model for EEG Signals Generation.- Top-Rank Learning Robust to Outliers.- Novel GAN Inversion Model with Latent Space Constraints for Face Reconstruction.- Edge Guided Attention Based Densely Connected Network for Single Image Super-Resolution.- An Agent-Based Market Simulator for Back-testing Deep Reinforcement Learning Based Trade Execution Strategies.- Looking beyond the haze: A Pyramid Fusion Approach.- DGCN-rs: a Dilated Graph Convolutional Networks Jointly Modelling Relation and Semantic for Multi-Event Forecasting.- Training Graph Convolutional Neural Network against Label Noise.- An LSTM-based Plagiarism Detection via Attention Mechanism anda Population-based Approach for Pre-Training Parameters with imbalanced Classes.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.