Marques de Sá | Pattern Recognition | E-Book | www.sack.de
E-Book

E-Book, Englisch, 318 Seiten, eBook

Marques de Sá Pattern Recognition

Concepts, Methods and Applications
2001
ISBN: 978-3-642-56651-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Concepts, Methods and Applications

E-Book, Englisch, 318 Seiten, eBook

ISBN: 978-3-642-56651-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



The book provides a comprehensive view of pattern recognition concepts and methods, illustrated with real-life applications in several areas. A CD-ROM offered with the book includes datasets and software tools, making it easier to follow in a hands-on fashion, right from the start.

Marques de Sá Pattern Recognition jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


1 Basic Notions.- 1.1 Object Recognition.- 1.2 Pattern Similarity and PR Tasks.- 1.2.1 Classification Tasks.- 1.2.2 Regression Tasks.- 1.2.3 Description Tasks.- 1.3 Classes, Patterns and Features.- 1.4 PR Approaches.- 1.4.1 Data Clustering.- 1.4.2 Statistical Classification.- 1.4.3 Neural Networks.- 1.4.4 Structural PR.- 1.5 PR Project.- 1.5.1 Project Tasks.- 1.5.2 Training and Testing.- 1.5.3 PR Software.- 2 Pattern Discrimination.- 2.1 Decision Regions and Functions.- 2.1.1 Generalized Decision Functions.- 2.1.2 Hyperplane Separability.- 2.2 Feature Space Metrics.- 2.3 The Covariance Matrix.- 2.4 Principal Components.- 2.5 Feature Assessment.- 2.5.1 Graphic Inspection.- 2.5.2 Distribution Model Assessment.- 2.5.3 Statistical Inference Tests.- 2.6 The Dimensionality Ratio Problem.- Exercises.- 3 Data Clustering.- 3.1 Unsupervised Classification.- 3.2 The Standardization Issue.- 3.3 Tree Clustering.- 3.3.1 Linkage Rules.- 3.3.2 Tree Clustering Experiments.- 3.4 Dimensional Reduction.- 3.5 K-Means Clustering.- 3.6 Cluster Validation.- Exercises.- 4 Statistical Classification.- 4.1 Linear Discriminants.- 4.1.1 Minimum Distance Classifier.- 4.1.2 Euclidian Linear Discriminants.- 4.1.3 Mahalanobis Linear Discriminants.- 4.1.4 Fisher’s Linear Discriminant.- 4.2 Bayesian Classification.- 4.2.1 Bayes Rule for Minimum Risk.- 4.2.2 Normal Bayesian Classification.- 4.2.3 Reject Region.- 4.2.4 Dimensionality Ratio and Error Estimation.- 4.3 Model-Free Techniques.- 4.3.1 The Parzen Window Method.- 4.3.2 The K-Nearest Neighbours Method.- 4.3.3 The ROC Curve.- 4.4 Feature Selection.- 4.5 Classifier Evaluation.- 4.6 Tree Classifiers.- 4.6.1 Decision Trees and Tables.- 4.6.2 Automatic Generation of Tree Classifiers.- 4.7 Statistical Classifiers in Data Mining.- Exercises.- 5 Neural Networks.- 5.1 LMS Adjusted Discriminants.- 5.2 Activation Functions.- 5.3 The Perceptron Concept.- 5.4 Neural Network Types.- 5.5 Multi-Layer Perceptrons.- 5.5.1 The Back-Propagation Algorithm.- 5.5.2 Practical aspects.- 5.5.3 Time Series.- 5.6 Performance of Neural Networks.- 5.6.1 Error Measures.- 5.6.2 The Hessian Matrix.- 5.6.3 Bias and Variance in NN Design.- 5.6.4 Network Complexity.- 5.6.5 Risk Minimization.- 5.7 Approximation Methods in NN Training.- 5.7.1 The Conjugate-Gradient Method.- 5.7.2 The Levenberg-Marquardt Method.- 5.8 Genetic Algorithms in NN Training.- 5.9 Radial Basis Functions.- 5.10 Support Vector Machines.- 5.11 Kohonen Networks.- 5.12 Hopfield Networks.- 5.13 Modular Neural Networks.- 5.14 Neural Networks in Data Mining.- Exercises.- 6 Structural Pattern Recognition.- 6.1 Pattern Primitives.- 6.1.1 Signal Primitives.- 6.1.2 Image Primitives.- 6.2 Structural Representations.- 6.2.1 Strings.- 6.2.2 Graphs.- 6.2.3 Trees.- 6.3 Syntactic Analysis.- 6.3.1 String Grammars.- 6.3.2 Picture Description Language.- 6.3.3 Grammar Types.- 6.3.4 Finite-State Automata.- 6.3.5 Attributed Grammars.- 6.3.6 Stochastic Grammars.- 6.3.7 Grammatical Inference.- 6.4 Structural Matching.- 6.4.1 String Matching.- 6.4.2 Probabilistic Relaxation Matching.- 6.4.3 Discrete Relaxation Matching.- 6.4.4 Relaxation Using Hopfield Networks.- 6.4.5 Graph and Tree Matching.- Exercises.- Appendix A—CD Datasets.- A.1 Breast Tissue.- A.2 Clusters.- A.3 Cork Stoppers.- A.4 Crimes.- A.5 Cardiotocographic Data.- A.6 Electrocardiograms.- A.7 Foetal Heart Rate Signals.- A.8 FHR-Apgar.- A.9 Firms.- A.10 Foetal Weight.- A.11 Food.- A.12 Fruits.- A.13 Impulses on Noise.- A.14 MLP Sets.- A.15 Norm2c2d.- A.16 Rocks.- A.17 Stock Exchange.- A.18 Tanks.- A.19 Weather.- Appendix B—CD Tools.- B.1 Adaptive Filtering.- B.2 Density Estimation.- B.3 Design Set Size.- B.4 Error Energy.- B.5 Genetic Neural Networks.- B.6 Hopfield network.- B.7 k-NN Bounds.- B.8 k-NN Classification.- B.9 Perceptron.- B.10 Syntactic Analysis.- Appendix C—Orthonormal Transformation.- Appendix C—Orthonormal Transformation.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.