Martirena-Hernandez / Alujas-Díaz / Amador-Hernandez | Proceedings of the International Conference of Sustainable Production and Use of Cement and Concrete | E-Book | sack.de
E-Book

E-Book, Englisch, Band 22, 438 Seiten, eBook

Reihe: RILEM Bookseries

Martirena-Hernandez / Alujas-Díaz / Amador-Hernandez Proceedings of the International Conference of Sustainable Production and Use of Cement and Concrete

ICSPCC 2019
1. Auflage 2019
ISBN: 978-3-030-22034-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

ICSPCC 2019

E-Book, Englisch, Band 22, 438 Seiten, eBook

Reihe: RILEM Bookseries

ISBN: 978-3-030-22034-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This volume gathers the latest advances, innovations and applications presented by leading international researchers and engineers at the International Conference on Sustainable Production and Use of Cement and Concrete (ICSPCC 2019), held in Villa Clara, Cuba on June 23-30, 2019. It covers highly diverse topics, including sustainable production of low-carbon cements, novelties in the development of supplementary cementitious materials, new techniques for the microstructural characterization of construction materials, Portland-based and alkaline-activated cementitious systems, development of additives and additions in the sustainable production of concrete, sustainable production of high-performance concrete, durable concrete produced with recycled aggregates, development of mortars for historical patrimony restoration, environmental and economic assessment of the production and use of cement. The contributions, which were selected by means of a rigorous, international peer-reviewprocess, highlight numerous exciting ideas that will inspire novel research directions and foster multidisciplinary collaboration between different specialists.

Martirena-Hernandez / Alujas-Díaz / Amador-Hernandez Proceedings of the International Conference of Sustainable Production and Use of Cement and Concrete jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Preface;6
2;Contents;8
3;RILEM Publications;14
3.1;RILEM Proceedings (PRO);14
4;Cement;27
5;Considerations for the Energy Balance and Preliminary Design of an Experimental LC3 Cement Pilot Plant;28
5.1;1 Introduction;28
5.2;2 Analysis and Results;30
5.2.1;2.1 The Rotary Kiln. Sizing;30
5.2.2;2.2 Thermal Design;33
5.3;3 Conclusions;34
5.4;References;35
6;Use of Grinding Aids for Grinding Ternary Blends Portland Cement-Calcined Clay-Limestone;36
6.1;1 Introduction;36
6.2;2 Materials and Methods;37
6.2.1;2.1 Materials Used;38
6.2.2;2.2 Experimental Procedure;38
6.2.3;2.3 Mechanical Physical Tests;40
6.3;3 Discussion of Results;41
6.3.1;3.1 Impact of Grinding Aids on Fineness;42
6.3.2;3.2 Impact of Intensifiers on Rheology (w/c Ratio and Flow);44
6.3.3;3.3 Impact of Intensifiers on Mechanical Properties;45
6.4;4 Conclusions;46
6.5;References;46
7;Effect of the Addition of Calcined Clay-Limestone-Gypsum in the Hydration of Portland Cement Pastes;47
7.1;1 Introduction;47
7.2;2 Methodology;48
7.2.1;2.1 Experimental Design;49
7.3;3 Discussion of Results;49
7.3.1;3.1 Effect in the Hydration of Cement Pastes;50
7.3.2;3.2 Effect in the Volume Changes;51
7.3.3;3.3 Effect the Shrinkage and Calorimetry;52
7.4;4 Conclusions;53
7.5;References;53
8;Influence of Limestone Content and PSD of Components on Properties of Clinker-Calcined Clay-Limestone Cements Produced by Intergrinding;54
8.1;1 Introduction;54
8.2;2 Materials and Methods;55
8.3;3 Results and Discussion;56
8.3.1;3.1 Fraction Composition;56
8.3.2;3.2 Mechanical Properties;58
8.3.3;3.3 Hydration;59
8.4;4 Conclusions;59
8.5;References;60
9;Influence of the Limestone Type on the Compression Strength of LC3 Cements;61
9.1;1 Introduction;61
9.2;2 Methodology;62
9.3;3 Results and Discussion;65
9.3.1;3.1 Compressive Strength (MPa);65
9.4;4 Conclusions;66
9.5;References;67
10;Pozzolanic Reactivity of the Calcination Products Obtained from Yaguajay Clay Deposit;68
10.1;1 Introduction;69
10.2;2 Materials;69
10.3;3 Experimental Procedure;70
10.4;4 Experimental Results and Discussion;70
10.4.1;4.1 Mineralogical Characterization of Raw Materials;70
10.4.2;4.2 Evaluation of the Pozzolanic Reactivity of the Calcination Products;72
10.4.3;4.3 Evaluation of the Effect of Clays on the Hydration Kinetics of Portland Cement;74
10.4.4;4.4 Mixture Selection Criteria;75
10.5;5 Conclusions;78
10.6;References;79
11;Mechanical Strength Analysis of Ternary Cement Pastes Containing Nanosilica and Metakaolin;80
11.1;1 Introduction;80
11.2;2 Materials and Methods;82
11.2.1;2.1 Materials;82
11.2.2;2.2 Cement Paste Composition and Preparation;82
11.2.3;2.3 Test Methods;83
11.3;3 Results and Discussion;83
11.3.1;3.1 Compressive Strength;83
11.3.2;3.2 Statistical Analysis;85
11.4;4 Conclusions;85
11.5;References;87
12;Hydration of Cement Pastes Using the Cement LC3;89
12.1;1 Introduction;89
12.2;2 Methodology;90
12.2.1;2.1 Materials;90
12.2.2;2.2 Methods;90
12.3;3 Results and Discussion;93
12.3.1;3.1 Mineralogical Analysis by X-Ray Diffraction;93
12.4;4 Conclusions;95
12.5;References;95
13;Potentialities of Different Materials from the Eastern Region of Cuba as Partial Cement Substitutes: A Comparison of Their Performance;96
13.1;1 Introduction;97
13.2;2 Materials and Methods;97
13.2.1;2.1 Materials Selection and Sample Preparation;97
13.2.2;2.2 Characterization of Materials;97
13.2.3;2.3 Pozzolanic Activity Test;98
13.2.4;2.4 Assessment of Performance in Ternary Blended Cements and Hollow Concrete Blocks;98
13.3;3 Results and Discussion;99
13.3.1;3.1 Chemical and Mineralogical Composition;99
13.3.2;3.2 Pozzolanic Reactivity in Portland Cement–Pozzolan System;99
13.3.3;3.3 Performance in Ternary Blended Systems and Hollow Concrete Blocks;100
13.4;4 Conclusions;101
13.5;References;102
14;Production of Limestone-Calcined Clay Cement in Guatemala;103
14.1;1 Introduction;104
14.2;2 Industrial Trial: Selection, Thermal Activation, Grinding;104
14.3;3 Properties of the LC3 Cement;107
14.4;4 Conclusions;109
14.5;References;109
15;Processing of Calcined Clays for Applications in Cementitious Materials: The Use of Grinding Aids and Particle Classification After Grinding;110
15.1;1 Introduction;110
15.2;2 Materials and Methods;111
15.3;3 Results and Discussion;112
15.3.1;3.1 Effect of Grinding Aids on Grinding;112
15.3.2;3.2 Effect of the Incorporation of Grinding Aids on Workability and Hydration of LC3;113
15.3.3;3.3 Particle Classification of Ground Clay to Increase the Kaolinite Content;114
15.4;4 Conclusions;115
15.5;References;116
16;First Experiences with Geopolymeric Mortars of Alkaline Activation Based on Natural Pozzolans;117
16.1;1 Introduction;117
16.2;2 Materials and Methods;118
16.2.1;2.1 Experimental Method;120
16.2.2;2.2 Procedure Description;120
16.3;3 Results and Discussion;121
16.3.1;3.1 Analysis of the Hardened State Bulk Density;121
16.3.2;3.2 Analysis of the Ultrasonic Pulse Velocity;122
16.3.3;3.3 Analysis of Electrical Resistivity;122
16.3.4;3.4 Analysis of the Compressive Strength;123
16.3.5;3.5 Comparison Between Alkaline Solutions;124
16.4;4 Conclusions;125
16.5;References;125
17;Surfaces of Response. An Effective Methodology to Estimate the Optimal Factor k of the Supplementary Cementitious Materials;127
17.1;1 Introduction;127
17.2;2 Materials and Methods;129
17.2.1;2.1 Experimental Method;130
17.2.2;2.2 Procedure Description;131
17.3;3 Results and Discussion;132
17.3.1;3.1 Analysis of Resistance to Compression and Porosity;133
17.3.2;3.2 Determination of the K Factor Based on the Criteria of the Cuban Norm;134
17.3.3;3.3 Estimation of the Factor K from the Proposed Methodology;135
17.4;4 Conclusions;136
17.5;References;137
18;Determination by Ultraviolet-Visible Spectroscopy of Adsorption of the Superplasticising Admixtures Dynamon SX 32 and Dynamon SRC 20 in Calcined Clay of Layers A, B and C of the Yaguajay Deposit and the Pontezuela Deposit;138
18.1;1 Introduction;138
18.2;2 Materials and Methods;139
18.2.1;2.1 Materials, Equipment and Reagents;139
18.2.2;2.2 Experimental Procedure;140
18.3;3 Discussion of Results;142
18.3.1;3.1 Obtaining UV-Vis Spectra from Superplasticisers;142
18.3.2;3.2 Stability of Superplasticisers in Basic Solution;143
18.3.3;3.3 Obtaining Calibration Lines;143
18.4;4 Conclusions;146
18.5;References;146
19;Effect of Gypsum Content on the Compressive Strength of LC3 Cement;148
19.1;1 Introduction;148
19.2;2 Materials and Methods;150
19.2.1;2.1 Methods;152
19.3;3 Results;152
19.4;4 Conclusion;153
19.5;References;153
20;Experimental Pilot Plant for Low Carbon Cements Development: The Cuban Innovative Project;155
20.1;1 Introduction;156
20.2;2 Project’s Genesis;156
20.3;3 Raw Materials;157
20.3.1;3.1 Kaolinite Clays;157
20.3.2;3.2 Limestone (CaCO3);157
20.4;4 Brief Description of Technological Process;158
20.5;5 Quality Control. Analytical and Instrumental Assurance;160
20.6;6 Pilot Plant Potentialities;160
20.7;7 Conclusions;160
20.8;References;161
21;Ultrasonication Effect of Silica Fume on Compressive Strength of Cement Pastes;162
21.1;1 Introduction;162
21.2;2 Methodology;163
21.2.1;2.1 Materials;163
21.2.2;2.2 Production of Cement Pastes;164
21.2.3;2.3 Analysis of the Compressive Strength;165
21.3;3 Results and Discussion;165
21.4;4 Conclusions;166
21.5;References;167
22;Influence of Fixation of Consistency or Superplasticizer Content on Strength of Cement Pastes with Silica Fume or Nanosilica;169
22.1;1 Introduction;169
22.2;2 Methodology;170
22.2.1;2.1 Materials;170
22.2.2;2.2 Production of Cement Pastes;171
22.2.3;2.3 Analysis of the Compressive Strength;172
22.3;3 Results and Discussion;172
22.3.1;3.1 Consistency;172
22.3.2;3.2 Compressive Strength;173
22.4;4 Conclusions;173
22.5;References;175
23;Concrete;176
24;The Effect of Various Superplasticizers on Ultra High Strength Concrete;177
24.1;1 Introduction;177
24.2;2 Literature Review;178
24.2.1;2.1 Chemical Structures of PCE and the Effect on Concrete Rheology;178
24.3;3 Materials and Mixture Design;179
24.4;4 Results;180
24.5;5 Conclusions;182
24.6;References;182
25;Can Sustainability of Concrete Construction Be Improved Through a Better Understanding of Field Practices? Lessons from Haiti;184
25.1;1 Introduction;185
25.2;2 Methodology;185
25.2.1;2.1 Research Method;185
25.2.2;2.2 Data Collection;186
25.3;3 Results;186
25.3.1;3.1 Compressive Strength and Slump Test;186
25.3.2;3.2 Microstructural Analysis;186
25.3.3;3.3 Environmental Assessment;187
25.4;4 Conclusions;189
25.5;References;190
26;Production of Durable Concrete with a Mineral Addition Blend of Calcined Clay-Limestone-Gypsum (LC2) and Portland Cement;191
26.1;1 Introduction;191
26.2;2 Materials and Methods;192
26.2.1;2.1 Materials Used;193
26.2.2;2.2 Experimental Procedure;194
26.3;3 Discussion of Results;196
26.3.1;3.1 Fresh Concrete Properties;196
26.3.2;3.2 Hardened Concrete Properties;197
26.3.3;3.3 Preliminary Assessment of the Durability of Concrete;198
26.4;4 Conclusions;200
26.5;References;200
27;Behavior of Retraction in Fluid Concretes Produced with Active Mineral Addition LC2;202
27.1;1 Introduction;203
27.2;2 Discussion and Development;204
27.2.1;2.1 Experimental Procedure;204
27.3;3 Discussion of Results;205
27.3.1;3.1 Effect of Pozzolanic Addition LC2 on Slump;206
27.3.2;3.2 Effect of Pozzolanic Addition LC2 on Compressive Strength;206
27.3.3;3.3 Effect of Addition LC2 on Volume Changes;207
27.4;4 Conclusions;208
27.5;References;208
28;Behavior of Concrete Made with PP-35 Cement in the Province of Cienfuegos;210
28.1;1 Introduction;210
28.1.1;1.1 Problematic Situation;211
28.1.2;1.2 Overall Objective;211
28.2;2 Methodology;211
28.3;3 Results and Discussion;212
28.3.1;3.1 Characterization of Raw Materials;212
28.3.2;3.2 Experimental Design;213
28.3.3;3.3 Models of Twenty-Eight-Day Behavior of the Average Compression Resistance When the Water/Cement Ratio Varies;214
28.4;4 Conclusions;216
28.5;References;216
29;Assessment of Addition of Calcinated Clay-Limestone-Plaster to Ordinary Portland Cement in Brickwork Mortars;217
29.1;1 Introduction;217
29.2;2 Experimental Method;218
29.3;3 Results;219
29.4;4 Conclusions;221
29.5;References;221
30;Concrete Manufactured with LC3 Following the Cuban Standard NC 120: 2014;222
30.1;1 Introduction;222
30.2;2 Materials and Methods;223
30.2.1;2.1 Test Protocol;223
30.3;3 Results on Fresh Concrete. Slump;225
30.4;4 Hardened Concrete;226
30.4.1;4.1 Result of the Compression Resistance Trial After 3 Days;226
30.4.2;4.2 Result of the Compression Resistance Trials After 7 Days;227
30.4.3;4.3 Result of the Compression Resistance Tests at 28 Days;228
30.4.4;4.4 Influence of Curing: The Influence of Curing on the H1 Series for the PC and for the LC3 Is Presented Below (Figs. 5 and 6);229
30.5;5 Conclusions;229
30.6;References;230
31;Evaluation of the LC3 to Be Used for the Local Production of Materials in Cienfuegos;231
31.1;1 Introduction;231
31.2;2 Analysis and Results;232
31.3;3 Characteristics of the Raw Materials Used for the Manufacture of the LC3-50 and LC3-65 Cements;233
31.4;4 Aggregates;233
31.5;5 Manufacturing Process of Hollow Concrete Blocks;235
31.6;6 Test of Compression Resistance to Hollow Concrete Blocks;236
31.7;7 Absorption Test for Hollow Concrete Blocks;236
31.8;8 Conclusions;238
31.9;References;238
32;Using a Physical Model Based on Particle Mobility for Mix Design of Commercial Concretes in Order to Increasing Eco-Efficiency;239
32.1;1 Introduction;240
32.2;2 Methodology;240
32.3;3 Results and Discussion;241
32.3.1;3.1 Material Characterization;241
32.3.2;3.2 Eco-Efficiency Analysis Using the Binder Intensity;242
32.3.3;3.3 Mobility Analysis and Descriptive Model;242
32.4;4 Conclusion;244
32.5;References;244
33;Influence of Temperature and Co2 Partial Pressure on Carbonation Curing for Cement-Free Steel Slag-Based Materials;246
33.1;1 Introduction;247
33.2;2 Experimental Program;247
33.2.1;2.1 Materials and Procedures;247
33.2.2;2.2 Microstructural Characterization;248
33.3;3 Results and Discussion;250
33.3.1;3.1 Compressive Strength;250
33.3.2;3.2 Thermogravimetric Analysis;250
33.3.3;3.3 Scanning Electron Microscopy;250
33.4;4 Conclusions;252
33.5;References;252
34;Use of Residues of Crushed Pet Bottles in the Form of a Scale as an Addition to the Manufacture of Concrete;254
34.1;1 Introduction;254
34.1.1;1.1 Current Status of Recycling and Its Environmental and Economic Benefits;255
34.1.2;1.2 Use of Plastics (PET) in the Manufacture of Concrete;256
34.2;2 Materials and Methods;257
34.2.1;2.1 Experimental Method;257
34.2.2;2.2 Procedure Description;258
34.3;3 Results and Discussion;259
34.3.1;3.1 Analysis of the Compressive Strength;259
34.3.2;3.2 Analysis of the Ultrasonic Pulse Velocity;260
34.3.3;3.3 Analysis of Electrical Resistivity;263
34.3.4;3.4 Analysis of Porosity;263
34.4;4 Conclusions;265
34.5;References;265
35;Evaluation of the Aggregates of the Quarry “El Purio” in the Province of Villa Clara;267
35.1;1 Introduction;267
35.2;2 Materials and Methods;268
35.2.1;2.1 Materials;268
35.2.2;2.2 Methods;269
35.3;3 Results and Discussion;270
35.4;4 Conclusions;274
35.5;References;274
36;Characterization of Ferrocement Designed with GRP Reinforcement. Deformation and Displacement;275
36.1;1 Introduction;275
36.1.1;1.1 Analysis of the Tests Carried Out on Aggregate and Cement;276
36.1.2;1.2 Reinforcement Material;277
36.2;2 Results and Analysis of the Tests;278
36.2.1;2.1 Bending Test Carried Out on Reinforced Ferrocement Specimens with GRP;278
36.3;References;281
37;Durability;282
38;Atmospheric Corrosion Behaviors of Reinforcement Steel in Reinforced Concrete in a Coastal City as Havana, Cuba;283
38.1;1 Introduction;284
38.2;2 Results and Discussion;284
38.2.1;2.1 Monthly Behavior of Deposition and Meteorological Parameters;284
38.2.2;2.2 Measurements in Concretes;285
38.2.3;2.3 Electrochemical Corrosion Velocity Behaviors in RCS;287
38.2.4;2.4 Time-to-Corrosion-Initiation and Time to Corrosion with Induced Cracking;287
38.3;3 Conclusions;291
38.4;References;291
39;Preliminary Results on Corrosion Rate in Carbonated LC3 Concrete;292
39.1;1 Introduction;293
39.2;2 Materials and Methods;293
39.3;3 Results and Discussion;294
39.3.1;3.1 Porosity Characterization by MIP and SEM Analysis;295
39.3.2;3.2 Corrosion Rate;295
39.4;4 Conclusions;295
39.5;References;297
40;Use of Electrical Test Method on Determination Aging Factor of Concrete Incorporating Supplementary Cementitious Materials;298
40.1;1 Introduction;299
40.2;2 Methodology;300
40.3;3 Results;302
40.4;4 Conclusions;305
40.5;References;305
41;Evaluation of Carbonation in Specimens Made with LC3 Low Carbon Cement;306
41.1;1 Introduction;307
41.2;2 Discussion and Development;308
41.2.1;2.1 Characteristics of the Assessed Concrete Samples;308
41.2.2;2.2 Experimental Procedure;308
41.3;3 Discussion of Results;310
41.3.1;3.1 Analysis of Carbonation in Concrete Specimens from Punta Matamoros;310
41.3.2;3.2 Influence of Type and Content of Cement on Carbonation;311
41.3.3;3.3 Influence of the Environmental Parameter of the Exposure Site;311
41.3.4;3.4 Influence of Pore Structure;312
41.3.5;3.5 Analysis of Carbonation in Concrete Specimens from the University SEDE;313
41.3.6;3.6 Influence of Type and Content of Cement on Carbonation;313
41.3.7;3.7 Influence of the Environmental Parameter of the Exposure Site;314
41.3.8;3.8 Influence of Pore Structure;314
41.4;4 Conclusions;315
41.5;References;315
42;Deterioration of Structures Affected by Concrete Leaching;317
42.1;1 Introduction;317
42.2;2 Methodology;318
42.2.1;2.1 First Case Study;318
42.2.2;2.2 Second Case Study;318
42.2.3;2.3 Measurement of Polarization Resistance;319
42.2.4;2.4 Electrical Resistive of Concrete (?);319
42.2.5;2.5 Corrosion Potential;319
42.3;3 Results and Discussion;319
42.3.1;3.1 First Case Study;319
42.3.2;3.2 Second Case Study;321
42.4;4 Conclusions;323
42.5;References;324
43;Atmospheric Corrosion Study of Carbon Steel in Havana Waterfront Zone;326
43.1;1 Introduction;326
43.2;2 Experimental Part;327
43.2.1;2.1 Test Sites;327
43.2.2;2.2 Meteorological Parameters;328
43.2.3;2.3 Outdoor Pollutants;328
43.2.4;2.4 Metallic Material and Corrosion Rate;329
43.3;3 Results and Discussion;329
43.3.1;3.1 Meteorological Parameters Behavior;329
43.3.2;3.2 Pollutants Deposition Behavior ( Cl - DR and  SOx - DR);330
43.3.3;3.3 Monthly and Cumulative Corrosion Rate Behavior;331
43.3.4;3.4 Corrosive Aggressiveness Category Determination of the Atmosphere;332
43.4;4 Conclusions;333
43.5;References;333
44;Studies Carried Out on Concretes Produced with LC3 According to Cuban Standard NC 120: 2014;335
44.1;1 Introduction;335
44.2;2 Materials and Experimental Protocol;336
44.2.1;2.1 Exposure Sites;339
44.2.2;2.2 Testing Protocols;340
44.3;3 Discussion of Results;340
44.3.1;3.1 Air Permeability Tests;340
44.3.2;3.2 Resistivity Tests;341
44.3.3;3.3 Chloride Ion Penetration Resistance Tests According to ASTM 1202;342
44.3.4;3.4 Analysis of Carbonation Results;342
44.4;4 Conclusions;343
44.5;References;343
45;Monitoring and Interpreting the Early Properties of Alkali-Activated Materials by Electrical Conductivity Measurement;344
45.1;1 Introduction;344
45.2;2 Experimental;345
45.2.1;2.1 Setup for Resistivity Measurement;345
45.2.2;2.2 Mixtures and Test Procedure;345
45.3;3 Results and Discussions;346
45.3.1;3.1 Conductivity Curves of the Samples with Ordinary Portland Cement;347
45.3.2;3.2 Conductivity Curves of the Samples with Alkali-Activated Slag;348
45.4;4 Concluding Remarks;349
45.5;References;350
46;Case Study on Concrete Durability Field Exposure Station in Hangzhou Bay Bridge, China;351
46.1;1 Introduction;351
46.2;2 Construction and Maintenance of the Field Exposure Station;352
46.2.1;2.1 Construction of Field Exposure Station;352
46.2.2;2.2 Maintenance of Field Exposure Station;353
46.2.3;2.3 Informatization of Data Management;353
46.3;3 Utilization of the Field Exposure Station;354
46.3.1;3.1 Multi-environmental Time Similarity;354
46.3.2;3.2 Life Prediction Technology Roadmap;354
46.3.3;3.3 Life Prediction Process;355
46.3.4;3.4 Life Prediction Results;356
46.4;4 Conclusion;357
46.5;References;358
47;Evaluating Carbonation-Induced Corrosion in High-Volume SCM Mixtures Through the Square Root Model;359
47.1;1 Introduction;359
47.2;2 Experimental Program;360
47.2.1;2.1 Materials and Sample Preparation;360
47.2.2;2.2 Testing Procedure;361
47.3;3 Results and Discussion;362
47.3.1;3.1 Environmental Conditions;362
47.3.2;3.2 Comparison Between Sheltered and Unsheltered Conditions;363
47.3.3;3.3 Comparison Between Accelerated and Natural Carbonation;363
47.4;4 Conclusions;365
47.5;References;365
48;Diagnose on the State of Deterioration of the Materials of a Ship of the Company of IT Transports of Combustible Transcupet Caibarien;366
48.1;1 Introduction;367
48.2;2 Development;369
48.3;3 Conclusions;373
48.4;References;374
49;Recycled Concrete Aggregate RCA;375
50;Prediction of Mechanical Properties of Concrete Made with Recycled Concrete Aggregates Using Statistical Analysis of Data Available in Literature;376
50.1;1 Introduction;377
50.2;2 Experimental Database;377
50.3;3 Statistical Analysis Results;378
50.3.1;3.1 Initial Findings of the Literature Study;378
50.3.2;3.2 Compressive Strength;378
50.3.3;3.3 Elastic Modulus;378
50.3.4;3.4 Flexural Strength;379
50.3.5;3.5 Splitting Tensile Strength;379
50.4;4 Conclusion;380
50.5;References;380
51;Evaluation of Different Treatment Techniques in Recycled Aggregates for Use in the Production of Concrete;381
51.1;1 Introduction;382
51.2;2 Materials and Methods;382
51.2.1;2.1 Characterization of Recycled Aggregate;383
51.2.2;2.2 Quickly Carbonation of Fine Fraction of ARC Recycled Fine Aggregate;383
51.2.3;2.3 Encapsulation of the Coarse Fraction of Recycled Aggregate with Steam Cure;384
51.2.4;2.4 Production of Concrete Mixtures with 100% Recycled Aggregate;385
51.3;3 Analysis of Results;386
51.3.1;3.1 Influence of the Degree of Carbonation of the Fine Recycled Aggregate in Mortars;386
51.3.2;3.2 Influence of Steam Curing on the Properties of Encapsulated Recycled Aggregate;387
51.3.3;3.3 Influence of the Different Combined Treatments on the Mechanical Properties of Concrete;388
51.4;4 Conclusions;388
51.5;References;389
52;Durability of Recycled Aggregate Concrete Under Real Conditions in Tropical Ambience;390
52.1;1 Introduction;390
52.2;2 Experimental Work;391
52.3;3 Discussions of Results;392
52.3.1;3.1 Air-Permeability;393
52.3.2;3.2 Carbonation Depth;393
52.3.3;3.3 Chloride Profile;394
52.4;4 Conclusions;395
52.5;References;395
53;Potential Use of a Quarry Waste for the Production of Self-compacting Concrete;397
53.1;1 Introduction;398
53.2;2 Methodology;398
53.2.1;2.1 Materials and Mixtures;398
53.2.2;2.2 Experimental;400
53.3;3 Results and Discussion;400
53.4;4 Conclusions;402
53.5;References;402
54;Successively Recycled Concretes Exposed to Sulfate Soil During 11 Years;404
54.1;1 Introduction;404
54.2;2 Experiences;405
54.2.1;2.1 Methodology;405
54.2.2;2.2 Materials and Mixtures;405
54.3;3 Results and Discussion;407
54.3.1;3.1 Visual Inspection;407
54.3.2;3.2 Dynamic Modulus of Elasticity;407
54.4;4 Conclusions;409
54.5;References;410
55;Sand Replacement by Fine Recycled Concrete Aggregates as an Approach for Sustainable Cementitious Materials;411
55.1;1 Introduction;412
55.2;2 Materials and Methods;413
55.3;3 Results and Discussion;415
55.3.1;3.1 Properties Testing of Natural Sand and Fine Recycled Concrete Aggregates;415
55.3.2;3.2 Fresh Mortar Testing;415
55.3.3;3.3 Hardened Mortar and Concrete Testing;416
55.4;4 Conclusions;416
55.5;References;417
56;Encapsulation of Recycled Aggregates Using Mixed Construction and Demolition Wastes;418
56.1;1 Introduction;418
56.2;2 Materials and Methods;419
56.2.1;2.1 Materials;419
56.2.2;2.2 Methods;421
56.3;3 Results and Discussion;424
56.4;4 Conclusions;427
56.5;References;428
57;Combining Reactivity Test, Isothermal Calorimetry, and Compressive Strength Measurements to Study Conventional and Alternative Supplementary Cementitious Materials;429
57.1;1 Introduction;430
57.2;2 Materials and Methods;430
57.2.1;2.1 Reactivity Test;431
57.2.2;2.2 Isothermal Calorimetry;432
57.2.3;2.3 Compressive Strength;432
57.3;3 Results;432
57.3.1;3.1 Reactivity Test;432
57.3.2;3.2 Tests on Cementitious Pastes;433
57.4;4 Discussion;436
57.5;5 Conclusions;438
57.6;References;438



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.