Autoencoding in the Complex Domain
Buch, Englisch, 258 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 5163 g
ISBN: 978-1-4842-3645-1
Verlag: Apress
At each step this bookprovides you with intuitive motivation, a summary of the most important equations relevant to the topic, and highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards.
What You'll Learn
- Code for deep learning, neural networks, and AI using C++ and CUDA C
- Carry out signal preprocessing using simple transformations, Fourier transforms, Morlet wavelets, and more
- Use the Fourier Transform for image preprocessing
- Implement autoencoding via activation in the complex domain
- Work with algorithms for CUDA gradient computation
- Use the DEEP operating manual
Who This Book Is For
Those who have at least a basic knowledge of neural networks and some prior programming experience, although some C++ and CUDA C is recommended.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Wirtschaftsinformatik
- Mathematik | Informatik EDV | Informatik Informatik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmier- und Skriptsprachen
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsinformatik, SAP, IT-Management
Weitere Infos & Material
0. Introduction.- 1. Embedded Class Labels.- 2. Signal Preprocessing.- 3. Image Preprocessing.- 4. Autoencoding.- 5. Deep Operating Manual.