Mathematischer Einführungskurs für diePhysik | E-Book | sack.de
E-Book

E-Book, Deutsch, 343 Seiten, eBook

Reihe: Teubner Studienbücher Physik

Mathematischer Einführungskurs für diePhysik


7., durchgesehene Auflage 1993
ISBN: 978-3-322-91869-7
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Deutsch, 343 Seiten, eBook

Reihe: Teubner Studienbücher Physik

ISBN: 978-3-322-91869-7
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark



Mathematischer Einführungskurs für diePhysik jetzt bestellen!

Zielgruppe


Upper undergraduate

Weitere Infos & Material


1. Vektoren.- 1.1. Definition von Vektoren.- 1.2. Addition von Vektoren und Multiplikation mit Zahlen.- 1.3. Das Innere Produkt von Vektoren.- 1.4. Koordinatentransformationen.- 1.5. Matrizen.- 1.6. Determinanten.- 1.7. Das Äußere Produkt von Vektoren.- 1.8. Mehrfache Vektorprodukte.- 2. Vektorfunktionen.- 2.1. Vektorwertige Funktionen.- 2.2. Ableitung vektorwertiger Funktionen.- 2.3. Raumkurven.- 3. Felder.- 3.1. Physikalische Felder.- 3.2. Partielle Ableitungen.- 3.3. Gradient.- 3.4. Divergenz.- 3.5. Rotation.- 3.6. Der Vektor-Differentialoperator $$\overrightarrow \nabla $$ (Nabla).- 4. Integration.- 4.1. Physikalische Motivation.- 4.2. Das Integral über Funktionen.- 4.3. Methoden zur Berechnung von Integralen.- 4.4. Uneigentliche Integrale.- 4.5. Parameterintegrale.- 4.6. Die ?-Funktion.- 5. Vektorintegration.- 5.1. (Gewöhnliches) Integral über Vektoren.- 5.2. Kurvenintegrale.- 5.3. Flächenintegrale.- 5.4. Volumenintegrale.- 6. Integralsätze.- 6.1. Die Darstellung des Nabla-Operators durch den Limes von Flächenintegralen.- 6.2. Der Gaußsche Satz.- 6.3. Partielle Integration mittels Gaußschem Satz.- 6.4. Übungen zum Selbsttest: Gaußscher Satz.- 6.5. Die Darstellung des Nabla-Operators durch den Limes von Kurvenintegralen.- 6.6. Der Stokessche Satz.- 6.7. Übungen zum Selbsttest: Stokesscher Satz.- 6.8. Die Integralsätze in D = 4 Dimensionen.- 7. Krummlinige Koordinaten.- 7.1. Lokale Koordinatensysteme.- 7.2. Differentialoperatoren in krummlinig-orthogonalen Koordinaten.- 8. Gewöhnliche Differentialgleichungen.- 8.1. Physikalische Motivation.- 8.2. Lösen von Differentialgleichungen.- 8.3. Trennung der Variablen.- 8.4. Lineare Differentialgleichungen 1. Ordnung.- 8.5. Lineare Differentialgleichungen 2. Ordnung.- 8.6. Geometrische Methoden.- 8.7. Chaos.-8.8. Iterative Lösungsverfahren (Algorithmen).- 8.9. Übungen zum Selbsttest; Differentialgleichungen.- 9. Randwertprobleme.- 9.1. Die Rolle der Randbedingungen; Eindeutigkeitssatz.- 9.2. Bestimmung eines wirbelfreien Feldes aus seinen Quellen und Randwerten.- 9.3. Wirbel- und quellenfreie Vektorfelder.- 9.4. Bestimmung eines quellenfreien (inkompressiblen) Feldes aus seinen Wirbeln.- 9.5. Der (Helmholtzsche) Hauptsatz der Vektoranalysis.- 9.6. Vektordifferentialgleichungen.- Lösungen der Übungen zum Selbsttest.- Kleine Literaturauswahl.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.