Buch, Englisch, Band 1367, 348 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 1130 g
Buch, Englisch, Band 1367, 348 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 1130 g
Reihe: Lecture Notes in Computer Science
ISBN: 978-3-540-64201-5
Verlag: Springer Berlin Heidelberg
During the last few years, we have seen quite spectacular progress in the area of approximation algorithms: for several fundamental optimization problems we now actually know matching upper and lower bounds for their approximability. This textbook-like tutorial is a coherent and essentially self-contained presentation of the enormous recent progress facilitated by the interplay between the theory of probabilistically checkable proofs and aproximation algorithms. The basic concepts, methods, and results are presented in a unified way to provide a smooth introduction for newcomers. These lectures are particularly useful for advanced courses or reading groups on the topic.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Operations Research Spieltheorie
- Mathematik | Informatik Mathematik Algebra Elementare Algebra
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Zeichen- und Zahlendarstellungen
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmierung: Methoden und Allgemeines
- Mathematik | Informatik EDV | Informatik Informatik Logik, formale Sprachen, Automaten
- Mathematik | Informatik Mathematik Mathematische Analysis Variationsrechnung
Weitere Infos & Material
to the theory of complexity and approximation algorithms.- to randomized algorithms.- Derandomization.- Proof checking and non-approximability.- Proving the PCP-Theorem.- Parallel repetition of MIP(2,1) systems.- Bounds for approximating MaxLinEq3-2 and MaxEkSat.- Deriving non-approximability results by reductions.- Optimal non-approximability of MaxClique.- The hardness of approximating set cover.- Semidefinite programming and its applications to approximation algorithms.- Dense instances of hard optimization problems.- Polynomial time approximation schemes for geometric optimization problems in euclidean metric spaces.