Mazya / Maz'ya / Soloviev | Boundary Integral Equations on Contours with Peaks | Buch | 978-3-0346-0170-2 | sack.de

Buch, Englisch, Band 196, 344 Seiten, Book, Format (B × H): 173 mm x 237 mm, Gewicht: 792 g

Reihe: Operator Theory: Advances and Applications

Mazya / Maz'ya / Soloviev

Boundary Integral Equations on Contours with Peaks


1. Auflage. 2009
ISBN: 978-3-0346-0170-2
Verlag: Springer

Buch, Englisch, Band 196, 344 Seiten, Book, Format (B × H): 173 mm x 237 mm, Gewicht: 792 g

Reihe: Operator Theory: Advances and Applications

ISBN: 978-3-0346-0170-2
Verlag: Springer


An equation of the form ??(x)? K(x,y)?(y)d?(y)= f(x),x?X, (1) X is called a linear integral equation. Here (X,?)isaspacewith ?-?nite measure ? and ? is a complex parameter, K and f are given complex-valued functions. The function K is called the kernel and f is the right-hand side. The equation is of the ?rst kind if ? = 0 and of the second kind if ? = 0. Integral equations have attracted a lot of attention since 1877 when C. Neumann reduced the Dirichlet problem for the Laplace equation to an integral equation and solved the latter using the method of successive approximations. Pioneering results in application of integral equations in the theory of h- monic functions were obtained by H. Poincar´ e, G. Robin, O. H¨ older, A.M. L- punov, V.A. Steklov, and I. Fredholm. Further development of the method of boundary integral equations is due to T. Carleman, G. Radon, G. Giraud, N.I. Muskhelishvili,S.G.Mikhlin,A.P.Calderon,A.Zygmundandothers. Aclassical application of integral equations for solving the Dirichlet and Neumann boundary value problems for the Laplace equation is as follows. Solutions of boundary value problemsaresoughtin the formof the doublelayerpotentialW? andofthe single layer potentialV?. In the case of the internal Dirichlet problem and the ext- nal Neumann problem, the densities of corresponding potentials obey the integral equation ???+W? = g (2) and ? ???+ V? = h (3) ?n respectively, where ?/?n is the derivative with respect to the outward normal to the contour.

Mazya / Maz'ya / Soloviev Boundary Integral Equations on Contours with Peaks jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Lp-theory of Boundary Integral Equations on a Contour with Peak.- Boundary Integral Equations in Hölder Spaces on a Contour with Peak.- Asymptotic Formulae for Solutions of Boundary Integral Equations Near Peaks.- Integral Equations of Plane Elasticity in Domains with Peak.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.