Buch, Englisch, 323 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 6387 g
Reihe: Computational Music Science
A First Introduction to Mathematics for Music Theorists
Buch, Englisch, 323 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 6387 g
Reihe: Computational Music Science
ISBN: 978-3-319-42935-9
Verlag: Springer International Publishing
This textbook is a first introduction to mathematics for music theorists, covering basic topics such as sets and functions, universal properties, numbers and recursion, graphs, groups, rings, matrices and modules, continuity, calculus, and gestures. It approaches these abstract themes in a new way: Every concept or theorem is motivated and illustrated by examples from music theory (such as harmony, counterpoint, tuning), composition (e.g., classical combinatorics, dodecaphonic composition), and gestural performance. The book includes many illustrations, and exercises with solutions.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Fachgebiete
- Geisteswissenschaften Musikwissenschaft Musikwissenschaft Allgemein Musiktheorie, Musikästhetik, Kompositionslehre
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Geistes- und Sozialwissenschaften
Weitere Infos & Material
Part I: Introduction and Short History.- The ‘Counterpoint’ of Mathematics and Music.- Short History of the Relationship Between Mathematics and Music.- Part II: Sets and Functions.- The Architecture of Sets.- Functions and Relations.- Universal Properties.- Part III: Numbers.- Natural Numbers.- Recursion.- Natural Arithmetic.- Euclid and Normal Forms.- Integers.- Rationals.- Real Numbers.- Roots, Logarithms, and Normal Forms.- Complex Numbers.- Part IV: Graphs and Nerves.- Directed and Undirected Graphs.- Nerves.- Part V: Monoids and Groups.- Monoids.- Groups.- Group Actions, Subgroups, Quotients, and Products.- Permutation Groups.- The Third Torus and Counterpoint.- Coltrane’s Giant Steps.- Modulation Theory.- Part VI: Rings and Modules.- Rings and Fields.- Primes.- Matrices.- Modules.- Just Tuning.- Categories.- Part VII: Continuity and Calculus.- Continuity.- Differentiability.- Performance.- Gestures.- Part VIII: Solutions, References, Index.- Solutions of Exercises.- References.- Index.