Mckeen | The Effect of Creep and other Time Related Factors on Plastics and Elastomers | E-Book | sack.de
E-Book

E-Book, Englisch, 506 Seiten

Reihe: Plastics Design Library

Mckeen The Effect of Creep and other Time Related Factors on Plastics and Elastomers


3. Auflage 2014
ISBN: 978-0-323-35407-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, 506 Seiten

Reihe: Plastics Design Library

ISBN: 978-0-323-35407-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



This reference guide brings together a wide range of critical data on the effect of creep and other long term effects on plastics and elastomers, enabling engineers to make optimal material choices and design decisions. The data are supported by explanations of how to make use of the data in real world engineering contexts and provides the long-term properties data that designers need to create a product that will stand the test of time.This new edition represents a full update of the data, removing all obsolete data, adding new data, and updating the list of plastics manufacturers. Additional plastics have also been included for polyesters, polyamides and others where available, including polyolefins, elastomers and fluoropolymers. Entirely new sections on biodegradable polymers and thermosets have been added to the book.The level of data included - along with the large number of graphs and tables for easy comparison - saves readers the need to contact suppliers, and the selection guide has been fully updated, giving assistance on the questions which engineers should be asking when specifying materials for any given application. - Trustworthy, current data on creep, stress-strain and environmental stress cracking, enabling easier and more effective material selection and product design. - Includes expert guidance to help practitioners make best use of the data. - Entirely new sections added on sustainable and biodegradable polymers, and thermosets.

Larry McKeen has a Ph.D. in Chemistry from the University of Wisconsin and worked for DuPont Fluoroproducts from 1978-2014. As a Senior Research Associate (Chemist), he was responsible for new product development including application technology and product optimization for particular end-uses, and product testing. He retired from DuPont at the end of 2014 and is currently a consultant.

Mckeen The Effect of Creep and other Time Related Factors on Plastics and Elastomers jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;The Effect of Creep and Other Time Related Factors on Plastics and Elastomers;4
3;Copyright Page;5
4;Contents;6
5;Foreword;12
6;Acknowledgments;14
7;1 Introduction to Creep, Polymers, Plastics and Elastomers;16
7.1;1.1 Introduction;16
7.2;1.2 Types of Stress;16
7.2.1;1.2.1 Tensile and Compressive Stress;16
7.2.2;1.2.2 Shear Stress;16
7.2.3;1.2.3 Torsional Stress;16
7.2.4;1.2.4 Flexural or Bending Stress;17
7.2.5;1.2.5 Hoop Stress;18
7.3;1.3 Basic Concepts of Creep;19
7.3.1;1.3.1 Categories, Stages, or Regions of Creep;20
7.3.2;1.3.2 Measures of Creep;21
7.3.2.1;1.3.2.1 Stress, Strain, and Time;21
7.3.2.2;1.3.2.2 Creep Modulus;23
7.3.2.3;1.3.2.3 Creep Strength and Rupture Strength;25
7.3.2.4;1.3.2.4 Temperature Shift Factors;28
7.3.2.5;1.3.2.5 Compression Set;29
7.3.2.6;1.3.2.6 Environmental Stress Cracking;31
7.3.2.6.1;Single Cantilever Test;31
7.3.2.6.2;Three Point Bending Test;31
7.3.2.6.3;Tensile Creep Rupture Test;32
7.3.2.6.4;ESC Performance Expectations;33
7.3.2.7;1.3.2.7 Summary of Creep Standard Tests;34
7.4;1.4 Plastics and Polymers;35
7.4.1;1.4.1 Polymerization;36
7.4.1.1;1.4.1.1 Addition Polymerization;36
7.4.1.2;1.4.1.2 Condensation Polymerization;36
7.4.2;1.4.2 Copolymers;37
7.4.3;1.4.3 Linear, Branched, and Cross-Linked Polymers;37
7.4.4;1.4.4 Polarity;38
7.4.5;1.4.5 Unsaturation;39
7.4.6;1.4.6 Steric Hindrance;40
7.4.7;1.4.7 Isomers;40
7.4.7.1;1.4.7.1 Structural Isomers;40
7.4.7.2;1.4.7.2 Geometric Isomers;40
7.4.7.3;1.4.7.3 Stereoisomers: Syndiotactic, Isotactic, Atactic;41
7.4.8;1.4.8 Inter and Intra Molecular Attractions in Polymers;42
7.4.8.1;1.4.8.1 Hydrogen Bonding;42
7.4.8.2;1.4.8.2 Van der Waals Forces;42
7.4.8.3;1.4.8.3 Chain Entanglement;43
7.4.9;1.4.9 General Classifications;43
7.4.9.1;1.4.9.1 Molecular Weight;43
7.4.9.2;1.4.9.2 Thermosets Versus Thermoplastics;44
7.4.9.3;1.4.9.3 Crystalline Versus Amorphous;44
7.5;1.5 Plastic Compositions;45
7.5.1;1.5.1 Fillers, Reinforcement, and Composites;46
7.5.2;1.5.2 Combustion Modifiers, Fire, Flame Retardants, and Smoke Suppressants;47
7.5.3;1.5.3 Release Agents;47
7.5.4;1.5.4 Slip Additives/Internal Lubricants;47
7.5.5;1.5.5 Antiblock Additives;48
7.5.6;1.5.6 Catalysts;48
7.5.7;1.5.7 Impact Modifiers and Tougheners;48
7.5.8;1.5.8 UV/Radiation Stabilizers;49
7.5.9;1.5.9 Optical Brighteners;49
7.5.10;1.5.10 Plasticizers;49
7.5.11;1.5.11 Pigments, Extenders, Dyes, and Mica;50
7.5.11.1;1.5.11.1 Titanium Dioxide;50
7.5.11.2;1.5.11.2 Carbon Black;50
7.5.12;1.5.12 Coupling Agents;50
7.5.13;1.5.13 Thermal Stabilizers;50
7.5.14;1.5.14 Antistats;50
7.6;1.6 Mechanisms of Creep of Plastics;51
7.6.1;1.6.1 Linear Polymers;51
7.6.2;1.6.2 Branched or Cross-Linked Polymers;52
7.6.3;1.6.3 Reinforced Plastics;52
7.6.4;1.6.4 Additives;52
7.7;1.7 Poisson’s Ratio;52
7.8;1.8 Using Creep Data in Plastic Product Design;53
7.8.1;1.8.1 Pseudo Elastic Design Method;54
7.8.2;1.8.2 Finite Element Analysis;54
7.9;1.9 Summary;55
7.10;References;55
8;2 Styrenic Plastics;58
8.1;2.1 Polystyrene;58
8.2;2.2 Acrylonitrile Styrene Acrylate;58
8.3;2.3 Styrene Acrylonitrile;60
8.3.1;2.3.1 Styrolution® Luran® SAN Resins;70
8.3.2;2.3.2 SABIC Innovative Plastics Thermocomp* SAN grades;78
8.4;2.4 Acrylonitrile Butadiene Styrene;79
8.4.1;2.4.1 INEOS Lustran® ABS Resins;81
8.4.2;2.4.2 Toray Resin Company Toyolac® ABS Resins;83
8.4.3;2.4.3 SABIC Innovative Plastics Cycolac* ABS Resins;85
8.4.4;2.4.4 Styron Magnum™ ABS Resins;86
8.5;2.5 Methyl methacrylate acrylonitrile butadiene styrene;89
8.6;2.6 Styrene Maleic Anhydride;90
8.7;2.7 Styrenic Block Copolymers;91
8.8;2.8 Styrenic Blends and Alloys;94
8.8.1;2.8.1 Bayer MaterialScience AG Styrenic Blends and Alloys;96
8.8.2;2.8.2 Styrolution® Styrenic Blends and Alloys;105
8.8.3;2.8.3 SABIC Innovative Plastics Styrenic Blends and Alloys;109
8.9;References;110
9;3 Polyether Plastics;112
9.1;3.1 Polyoxymethylene (POM or Acetal Homopolymer);112
9.2;3.2 Polyoxymethylene Copolymer (POM-Co or Acetal Copolymer);112
9.2.1;3.2.1 Celanese Hostaform® and Celcon® POM-Co Resins;123
9.2.2;3.2.2 BASF Ultraform® POM-Co Resins;136
9.2.3;3.2.3 Mitsubishi Engineering-Plastics Corp. Iupital® POM-Co Resins;146
9.3;3.3 Modified Polyphenylene Ether/Polyphenylene Oxides;148
9.3.1;3.3.1 SABIC Innovative Plastics Noryl* Polyther Blends/Alloys Resins;149
9.3.2;3.3.2 Evonik Industries Vestoran® Polyther Blends/Alloys;153
9.4;References;154
10;4 Polyesters;156
10.1;4.1 Polycarbonate;156
10.1.1;4.1.1 SABIC Innovative Plastics Lexan® 101 PC Resins;158
10.1.2;4.1.2 Mitsubishi Engineering-Plastics Corp Novarex® and Iupilon® PC Resins;162
10.2;4.2 Polybutylene Terephthalate;166
10.2.1;4.2.1 Celanese Celanex® PBT Resins;171
10.2.2;4.2.2 DuPont Engineering Polymers Crastin® PBT Resins;173
10.2.3;4.2.3 Evonik Industries Vestodur® PBT Resins;178
10.2.4;4.2.4 BASF Ultradur® PBT Resins;186
10.2.5;4.2.5 Mitsubishi Engineering-Plastics Corporation Novaduran® PBT Resins;188
10.3;4.3 Polyethylene Terephthalate;194
10.3.1;4.3.1 Celanese Impet® PET Resins;195
10.3.2;4.3.2 DuPont Engineering Polymers Rynite® PET Resins;196
10.4;4.4 Liquid Crystalline Polymers;211
10.5;4.5 Polycyclohexylene-Dimethylene Terephthalate;216
10.6;4.6 Polyphthalate Carbonate;216
10.7;4.7 Polyester Blends and Alloys;216
10.7.1;4.7.1 SABIC Innovative Plastics Polyester Blend Resins SABIC Vandar®;221
10.7.2;4.7.2 DuPont Engineering Polymers Crastin® Polyester Alloys;225
10.8;References;226
11;5 Polyimides;228
11.1;5.1 Polyetherimide;228
11.2;5.2 Polyamide-Imide;228
11.3;5.3 Polyimide;243
11.3.1;5.3.1 Standard PIs;244
11.3.2;5.3.2 Thermoplastic PIs;245
11.4;5.4 Imide Polymer Blends;245
11.5;References;260
12;6 Polyamides (Nylons);262
12.1;6.1 Nylon 6 (PA 6);262
12.1.1;6.1.1 BASF Ultramid® B PA 6 Resins;264
12.1.2;6.1.2 SABIC Innovative Plastics PA 6 Resins;265
12.1.3;6.1.3 DuPont Engineering Polymers Zytel® and Minlon® PA 6 Resins;266
12.1.4;6.1.4 Toray Industries Amilan™ PA 6 Resins;268
12.1.5;6.1.5 EMS Grivory Grilon® PA 6 Resins;269
12.2;6.2 Nylon 11 (PA 11);272
12.3;6.3 Nylon 12 (PA 12);274
12.3.1;6.3.1 Evonik Vestamid® PA 12 Resins;274
12.3.2;6.3.2 EMS Grivory Grilamid® PA 12 Resins;283
12.4;6.4 Nylon 46 (PA 46);284
12.5;6.5 Nylon 66 (PA 66);286
12.5.1;6.5.1 DuPont Engineering Polymers Zytel® and Minlon® PA 66 (Nylon 66) Resins;286
12.5.2;6.5.2 BASF Ultramid® a PA 66 (Nylon 66) Resins;299
12.6;6.6 Nylon 610 (PA 610);300
12.7;6.7 Nylon 612 (PA 612);300
12.7.1;6.7.1 Evonik Vestamid® D PA 612 Resins;302
12.7.2;6.7.2 DuPont Engineering Polymers Zytel® PA 612 Resins;306
12.8;6.8 Nylon 6/66;307
12.9;6.9 Nylon Amorphous;307
12.9.1;6.9.1 Evonik Trogamid® Amorphous/Transparent Polyamide Resins;310
12.9.2;6.9.2 EMS Grivory Grilamid® Amorphous/Transparent Polyamide Resins;311
12.10;6.10 Polyarylamide;313
12.11;6.11 Polyphthalamide;315
12.11.1;6.11.1 Solvay Advanced Polymers Amodel® PPA Resins;317
12.11.2;6.11.2 EMS Grivory® PPA Resins;325
12.12;References;335
13;7 Polyolefins and Acrylics;336
13.1;7.1 Polyethylene;336
13.1.1;7.1.1 High Density Polyethylene;338
13.1.2;7.1.2 Ultrahigh Molecular Weight Polyethylene;349
13.2;7.2 Polypropylene;353
13.2.1;7.2.1 LyondellBasell Hostalen® Polypropylene (PP) Resins;354
13.2.2;7.2.2 SABIC Innovative Plastics Polypropylene (PP) resins;357
13.3;7.3 Polymethylpentene;360
13.4;7.4 Cyclic Olefin Copolymer;361
13.5;7.5 Rigid PVC;361
13.6;7.6 Polyacrylics;362
13.6.1;7.6.1 Lucite Industries Diakon™ Acrylic Resin;366
13.6.2;7.6.2 Cyro Industries Acrylite® Acrylic Resins;367
13.7;References;368
14;8 Thermoplastic Elastomers;370
14.1;8.1 Thermoplastic Polyurethane Elastomers;370
14.2;8.2 Thermoplastic Copolyester Elastomers;373
14.3;8.3 Thermoplastic Polyether Olefin Elastomers;381
14.4;8.4 Thermoplastic Polyether Block Amide Elastomers;381
14.5;References;387
15;9 Fluoropolymers;388
15.1;9.1 Polytetrafluoroethylene;388
15.1.1;9.1.1 DuPont Teflon® PTFE Resins;391
15.1.2;9.1.2 Asahi Glass Chemicals Fluon® PTFE;396
15.2;9.2 Ethylene Chlorotrifluoroethylene;400
15.3;9.3 Ethylene Tetrafluoroethylene;403
15.3.1;9.3.1 DuPont Tefzel® ETFE Resins;404
15.3.2;9.3.2 Asahi Glass Chemicals Fluon® ETFE Resin;405
15.4;9.4 Fluorinated Ethylene Propylene;407
15.5;9.5 Perfluoro Alkylvinylether (PFA/MFA);413
15.5.1;9.5.1 PFA;413
15.5.1.1;9.5.1.1 DuPont Teflon® PFA Resin;414
15.5.1.2;9.5.1.2 Solvay Solexis Hyflon® PFA Resins;415
15.5.2;9.5.2 MFA;418
15.6;9.6 Polychlorotrifluoroethylene;420
15.7;9.7 Polyvinylidene Fluoride;420
15.7.1;9.7.1 Solvay Solexis Solef® PVDF Resins;422
15.7.2;9.7.2 Arkema Kynar® PVDF Resins;426
15.8;References;427
16;10 High-Temperature Polymers;428
16.1;10.1 Polyketones;428
16.1.1;10.1.1 Polyether Ether Ketones;428
16.1.1.1;10.1.1.1 Victrex PLC. Victrex® PEEK Resins;428
16.1.1.2;10.1.1.2 Solvay Advanced Polymers KetaSpire® PEEK Resins;433
16.1.2;10.1.2 Polyether Ketones;437
16.1.3;10.1.3 Polyether Ketone Ether Ketone Ketones;438
16.1.4;10.1.4 Polyaryl Ether Ketones;438
16.2;10.2 Polyethersulfone;449
16.2.1;10.2.1 BASF Ultrason® PES Resins;449
16.2.2;10.2.2 Solvay Advanced Polymers Veradel® PES Resins;455
16.2.3;10.2.3 Sumitomo Chemical Sumikaexcel® PES Resins;457
16.3;10.3 Polyphenylene Sulfide;458
16.3.1;10.3.1 Chevron Phillips Chemical Ryton® PPS Resin;459
16.3.2;10.3.2 Celanese Fortron® PPS Resins;463
16.4;10.4 Polysulfone;474
16.4.1;10.4.1 BASF Ultrason® S PSU Resins;475
16.4.2;10.4.2 Solvay Advanced Polymers Udel® PSU Resins;480
16.5;10.5 Polyphenylsulfone;483
16.5.1;10.5.1 Solvay Advanced Polymers Radel® R PPSU Resins;483
16.5.2;10.5.2 BASF Ultrason® P PPSU Resins;486
16.6;References;488
17;Appendix 1: Abbreviations;490
18;Appendix 2: Unit Conversion Tables;492
18.1;Pressure, Stress, Modulus;492
18.2;Strain;493
19;Index;494


2 Styrenic Plastics
This chapter on styrenic plastics covers a broad class of polymeric materials of which an important part is styrene. Chemical structures, manufacturers, and trade names along with typical end uses of the plastics are included besides extensive graphic creep data as a function of temperature and stress level. Plastics included in this section are acrylonitrile–butadiene–styrene copolymer, polystyrene, high-impact polystyrene, styrene–acrylonitrile copolymer, and styrene maleic anhydride. Keywords
ABS; acrylonitrile–butadiene–styrene copolymer; acrylonitrile–styrene–acrylate; ASA; creep modulus; creep strain; isochronous stress–strain; MABS; polystyrene; recovery; SAN; SBC; stress relaxation; Styrene; styrene–acrylonitrile copolymer; styrene–butadiene copolymer; styrene maleic anhydride; tensile creep This chapter on styrenic plastics covers a broad class of polymeric materials of which an important part is styrene. Styrene, also known as vinyl benzene, is an organic compound with the chemical formula C6H5CHCH2. Its structure is shown in Figure 2.1.
Figure 2.1 Chemical structure of styrene. It is used as a monomer to make plastics such as polystyrene, acrylonitrile butadiene styrene (ABS), styrene acrylonitrile (SAN), and the other polymers in this chapter. 2.1 Polystyrene
Polystyrene is the simplest plastic based on styrene. Its structure is shown in Figure 2.2.
Figure 2.2 Chemical structure of polystyrene. Pure solid polystyrene is a colorless, hard plastic with limited flexibility. Polystyrene can be transparent or can be made in various colors. It is economical and is used for producing plastic model assembly kits, plastic cutlery, CD “jewel” cases, and many other objects where a fairly rigid, economical plastic is desired. Polystyrene’s most common use, however, is as expanded polystyrene (EPS). EPS is produced from a mixture of about 5–10% gaseous blowing agent (most commonly pentane or carbon dioxide) and 90–95% polystyrene by weight. The solid plastic beads are expanded into foam through the use of heat (usually steam). The heating is carried out in a large vessel holding 200–2000 L. An agitator is used to keep the beads from fusing together. The expanded beads are lighter than unexpanded beads so they are forced to the top of the vessel and removed. This expansion process lowers the density of the beads to 3% of their original value and yields a smooth-skinned, closed cell structure. Next, the preexpanded beads are usually “aged” for at least 24 h in mesh storage silos. This allows air to diffuse into the beads, cooling them and making them harder. These expanded beads are excellent for detailed molding. Extruded polystyrene (XPS), which is different from EPS, is commonly known by the trade name Styrofoam™. All these foams are not of interest in this book. Three general forms of polystyrene are: 1. General purpose (PS or GPPS) 2. High impact (HIPS) 3. Syndiotactic (SPS or sPS). One of the most important plastics is high-impact polystyrene, or HIPS. This is a styrene matrix that is imbedded with an impact modifier, which is basically a rubber-like polymer such as polybutadiene. This is shown in Figure 2.3.
Figure 2.3 The structure of HIPS. Manufacturers and trade names: BASF polystyrene and polystyrol, Dow Chemical Trycite™, Styron Styron™. Applications and uses: General purpose: yogurt, cream, butter, meat trays, egg cartons, fruit and vegetable trays, as well as cakes, croissants, and cookies. medical and packaging/disposables, bakery packaging, and large and small appliances, medical and packaging/disposables, particularly where clarity is required. High impact: refrigeration accessories, small appliances, electric lawn and garden equipment, toys, and remote controls. Data for Styrolution® polystyrene plastics are found in Figures 2.4–2.17.
Figure 2.4 Isochronous stress–strain at 23°C of Styrolution® PS 143 E—medium strength, easy flowing general purpose grade polystyrene resin.
Figure 2.5 Creep modulus versus time at 23°C of Styrolution® PS 143 E—medium strength, easy flowing general purpose grade polystyrene resin.
Figure 2.6 Isochronous stress–strain at 23°C of Styrolution® PS 454C—impact-resistant polystyrene resin (PS).
Figure 2.7 Isochronous stress–strain at 40°C of Styrolution® PS 454C—impact-resistant polystyrene resin (PS).
Figure 2.8 Isochronous stress–strain at 60°C of Styrolution® PS 454C—impact-resistant polystyrene resin (PS).
Figure 2.9 Creep modulus at 23°C of Styrolution® PS 454C—impact-resistant polystyrene resin (PS).
Figure 2.10 Creep modulus at 40°C of Styrolution® PS 454C—impact-resistant polystyrene resin (PS).
Figure 2.11 Creep modulus at 60°C of Styrolution® PS 454C—impact-resistant polystyrene resin (PS).
Figure 2.12 Creep curves of Styrolution® PS 168N at 20°C—high-molecular-weight, heat-resistant polystyrene resin (PS) [1].
Figure 2.13 Creep rupture curves of Styrolution® PS 456F at various temperatures—heat-resistant, impact-resistant polystyrene resin (PS) [1].
Figure 2.14 Creep curves of high-impact Styrolution® polystyrene resins at 20°C [1].
Figure 2.15 Creep rupture curves of several general purpose Styrolution® PS polystyrene resins [1].
Figure 2.16 Creep rupture curves in olive oil/oleic acid (1:1 volume blend) as a function of melting point of Styrolution® PS HIPS resins [2].
Figure 2.17 Creep rupture curves in stress cracking testing by various agents of Styrolution® PS HIPS resins [2]. 2.2 Acrylonitrile Styrene Acrylate
Acrylonitrile styrene acrylate (ASA) is the acronym for acrylate rubber-modified SAN copolymer. ASA is a terpolymer that can be produced by either a reaction process or by a graft process. ASA is usually made by introducing a grafted acrylic ester elastomer during the copolymerization of styrene and acrylonitrile, known as SAN. SAN is described later in this chapter. The finely divided elastomer powder is uniformly distributed in and grafted to the SAN molecular chains. The outstanding weatherability of ASA is due to the acrylic ester elastomer. ASA polymers are amorphous plastics, which have mechanical properties similar to those of the ABS resins described in Section 2.5. However, the ASA properties are far less affected by outdoor weathering. ASA resins are available in natural, off-white, and a broad range of standard and custom-matched colors. ASA resins can be compounded with other polymers to make alloys and compounds that benefit from ASA’s weather resistance. Manufacturers and trade names: BASF Luran® S. Applications and uses: automotive components, electrical equipment subjected to high temperatures, parabolic reflectors, solar energy systems, movement sensors, surfboards, golf cars, lawn and garden equipment, sporting goods, automotive exterior parts, safety helmets, and building materials. Data for Styrolution® ASA plastics are found in Figures 2.18–2.31.
Figure 2.18 Isochronous stress–strain at 23°C of Styrolution® Luran® S 757R—rigid, high hardness ASA resin.
Figure 2.19 Isochronous stress–strain at 40°C of Styrolution® Luran® S 757R—rigid, high hardness ASA resin.
Figure 2.20 Isochronous stress–strain at 60°C of Styrolution® Luran® S 757R—rigid, high hardness ASA resin.
Figure 2.21 Isochronous stress–strain at 80°C of Styrolution® Luran® S 757R—rigid, high hardness ASA resin.
Figure 2.22 Creep modulus versus time at 23°C of Styrolution® Luran® S 757R—rigid, high hardness ASA resin.
Figure 2.23 Creep modulus versus time at 40°C of Styrolution® Luran® S 757R—rigid, high hardness ASA resin.
Figure 2.24 Creep modulus versus time at 60°C of Styrolution® Luran® S 757R—rigid, high hardness ASA resin.
Figure 2.25 Creep modulus versus time at 80°C of Styrolution® Luran® S 757R—rigid, high hardness ASA resin.
Figure 2.26 Isochronous stress–strain at 23°C of Styrolution® Luran® S 778T—general purpose, toughened, high heat grade ASA resin [3].
Figure 2.27 Isochronous stress–strain at...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.