McKibben | Discovering Evolution Equations with Applications | E-Book | sack.de
E-Book

McKibben Discovering Evolution Equations with Applications

Volume 1-Deterministic Equations
1. Auflage 2010
ISBN: 978-1-4200-9209-7
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

Volume 1-Deterministic Equations

E-Book, Englisch, 466 Seiten

Reihe: Chapman & Hall/CRC Applied Mathematics & Nonlinear Science

ISBN: 978-1-4200-9209-7
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Discovering Evolution Equations with Applications: Volume 1-Deterministic Equations provides an engaging, accessible account of core theoretical results of evolution equations in a way that gradually builds intuition and culminates in exploring active research. It gives nonspecialists, even those with minimal prior exposure to analysis, the foundation to understand what evolution equations are and how to work with them in various areas of practice.

After presenting the essentials of analysis, the book discusses homogenous finite-dimensional ordinary differential equations. Subsequent chapters then focus on linear homogenous abstract, nonhomogenous linear, semi-linear, functional, Sobolev-type, neutral, delay, and nonlinear evolution equations. The final two chapters explore research topics, including nonlocal evolution equations. For each class of equations, the author develops a core of theoretical results concerning the existence and uniqueness of solutions under various growth and compactness assumptions, continuous dependence upon initial data and parameters, convergence results regarding the initial data, and elementary stability results.

By taking an applications-oriented approach, this self-contained, conversational-style book motivates readers to fully grasp the mathematical details of studying evolution equations. It prepares newcomers to successfully navigate further research in the field.

McKibben Discovering Evolution Equations with Applications jetzt bestellen!

Zielgruppe


Professional/applied mathematicians, physicists, and electrical and mechanical engineers; graduate and advanced undergraduate students in applied functional analysis.


Autoren/Hrsg.


Weitere Infos & Material


A Basic Analysis Toolbox
Some Basic Mathematical Shorthand
Set Algebra
Functions
The Space (R, · )
Sequences in (R, · )
The Spaces (RN, · RN) and (MN(R), · MN(R))
Abstract Spaces
Elementary Calculus in Abstract Spaces
Some Elementary ODEs
Looking Ahead
Guidance for Exercises

Homogenous Linear Evolution Equations in RN
Motivation by Models
The Matrix Exponential
The Homogenous Cauchy Problem: Well-Posedness
Perturbation and Convergence Results
A Glimpse at Long-Term Behavior
Looking Ahead
Guidance for Exercises

Abstract Homogenous Linear Evolution Equations
Linear Operators
Motivation by Models
Introducing Semigroups
The Abstract Homogenous Cauchy Problem
Generation Theorems
A Useful Perturbation Result
Some Approximation Theory
A Brief Glimpse at Long-Term Behavior
An Important Look Back
Looking Ahead
Guidance for Exercises

Nonhomogenous Linear Evolution Equations
Finite-Dimensional Setting
Infinite-Dimensional Setting
Introducing Two New Models
Looking Ahead
Guidance for Exercises

Semi-Linear Evolution Equations
Motivation by Models
More Tools from Functional Analysis
Some Essential Preliminary Considerations
Growth Conditions
Theory for Lipschitz-Type Forcing Terms
Theory for Non-Lipschitz-Type Forcing Terms
Theory under Compactness Assumptions
A Summarizing Look Back
Looking Ahead
Guidance for Exercises

Functional Evolution Equations
Motivation by Models
Functionals
Theory in the Lipschitz Case
Theory under Compactness Assumptions
Models—New and Old
Looking Ahead
Guidance for Exercises

Implicit Evolution Equations
Sobolev-Type Equations
Neutral Evolution Equations
Looking Ahead
Guidance for Exercises

Delay Evolution Equations
Motivation by Models
Setting and Formulation of the Problem
Theory for Lipschitz-Type Forcing Terms
Theory for Non-Lipschitz-Type Forcing Terms
Implicit Delay Evolution Equations
Other Forms of Delay
Models—New and Old
An Important Look Back!
Looking Ahead
Guidance for Exercises
Nonlinear Evolution Equations
A Wealth of New Models
Comparison of the Linear and Nonlinear Settings
The Crandall–Liggett Theory
A Quick Look at Nonlinear Evolution Inclusions
Some Final Comments
Guidance for Exercises
Nonlocal Evolution Equations
Introductory Remarks
Motivation by Models
Some Abstract Theory
Final Comments
Beyond Volume 1…
Three New Classes of Evolution Equations
Next Stop… Stochastic Evolution Equations!: The Preface to Volume 2
Bibliography
Index


Mark A. McKibben is an associate professor in the mathematics and computer science department at Goucher College in Baltimore, Maryland, USA. Dr. McKibben is the author of more than 25 research articles and a referee for more than 30 journals. His research areas include differential equations, stochastic analysis, and applied functional analysis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.