McWeeny / Jones | Symmetry | E-Book | sack.de
E-Book

E-Book, Englisch, 262 Seiten, Web PDF

McWeeny / Jones Symmetry

An Introduction to Group Theory and Its Applications
1. Auflage 2013
ISBN: 978-1-4832-2624-8
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

An Introduction to Group Theory and Its Applications

E-Book, Englisch, 262 Seiten, Web PDF

ISBN: 978-1-4832-2624-8
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Symmetry: An Introduction to Group Theory and its Application is an eight-chapter text that covers the fundamental bases, the development of the theoretical and experimental aspects of the group theory. Chapter 1 deals with the elementary concepts and definitions, while Chapter 2 provides the necessary theory of vector spaces. Chapters 3 and 4 are devoted to an opportunity of actually working with groups and representations until the ideas already introduced are fully assimilated. Chapter 5 looks into the more formal theory of irreducible representations, while Chapter 6 is concerned largely with quadratic forms, illustrated by applications to crystal properties and to molecular vibrations. Chapter 7 surveys the symmetry properties of functions, with special emphasis on the eigenvalue equation in quantum mechanics. Chapter 8 covers more advanced applications, including the detailed analysis of tensor properties and tensor operators. This book is of great value to mathematicians, and math teachers and students.

McWeeny / Jones Symmetry jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Symmetry: An Introduction to Group Theory and its Applications;4
3;Copyright Page;5
4;Table of Contents;10
5;THE INTERNATIONAL ENCYCLOPEDIA OF PHYSICAL CHEMISTRY AND CHEMICAL PHYSICS;7
6;INTRODUCTION;8
7;PREFACE;14
8;CHAPTER 1. GROUPS;16
8.1;1.1 Symbols and the group property;16
8.2;1.2 Definition of a group;21
8.3;1.3 The multiplication table;22
8.4;1.4 Powers, products, generators;24
8.5;1.5 Subgroups, cosets, classes;26
8.6;1.6 Invariant subgroups. The factor group;28
8.7;1.7 Homomorphisms and isomorphisms;29
8.8;1.8 Elementary concept of a representation;31
8.9;1.9 The direct product;33
8.10;1.10 The algebra of a group;34
9;CHAPTER 2. LATTICES AND VECTOR SPACES;37
9.1;2.1 Lattices. One dimension;37
9.2;2.2 Lattices. Two and three dimensions;40
9.3;2.3 Vector spaces;42
9.4;2.4 n-Dimensional space. Basis vectors;43
9.5;2.5 Components and basis changes;46
9.6;2.6 Mappings and similarity transformation;48
9.7;2.7 Representations. Equivalence;53
9.8;2.8 Length and angle. The metric;56
9.9;2.9 Unitary transformations;62
9.10;2.10 Matrix elements as scalar products;64
10;CHAPTER 3. POINT AND SPACE GROUPS;69
10.1;3.1 Symmetry operations as orthogonal transformations;69
10.2;3.2 The axial point groups;74
10.3;3.3 The tetrahedral and octahedral point groups;84
10.4;3.4 Compatibility of symmetry operations;90
10.5;3.5 Symmetry of crystal lattices;93
10.6;3.6 Derivation of space groups;100
11;CHAPTER 4. REPRESENTATIONS OF POINT AND TRANSLATION GROUPS;106
11.1;4.1 Matrices for point group operations;106
11.2;4.2 Nomenclature. Representations;110
11.3;4.3 Translation groups. Representations and reciprocal space;120
12;CHAPTER 5. IRREDUCIBLE REPRESENTATIONS;124
12.1;5.1 Reducibility. Nature of the problem;124
12.2;5.2 Reduction and complete reduction. Basic theorems;125
12.3;5.3 The orthogonality relation;131
12.4;5.4 Group characters;136
12.5;5.5 The regular representation;139
12.6;5.6 The number of distinct irreducible representations;140
12.7;5.7 Reduction of representations;141
12.8;5.8 Idempotents and projection operators;146
12.9;5.9 The direct product;148
13;CHAPTER 6. APPLICATIONS INVOLVING ALGEBRAIC FORMS;155
13.1;6.1 Nature of applications;155
13.2;6.2 Invariant forms. Symmetry restrictions;156
13.3;6.3 Principal axes. The eigenvalue problem;162
13.4;6.4 Symmetry considerations;165
13.5;6.5 Symmetry classification of molecular vibrations;166
13.6;6.6 Symmetry coordinates in vibration theory;174
14;CHAPTER 7. APPLICATIONS INVOLVING FUNCTIONS AND OPERATORS;181
14.1;7.1 Transformation of functions;181
14.2;7.2 Functions of Cartesian coordinates;185
14.3;7.3 Operator equations. Invariance;189
14.4;7.4 Symmetry and the eigenvalue problem;196
14.5;7.5 Approximation methods. Symmetry functions;202
14.6;7.6 Symmetry functions by projection;205
14.7;7.7 Symmetry functions and equivalent functions;210
14.8;7.8 Determination of equivalent functions;212
15;CHAPTER 8. APPLICATIONS INVOLVING TENSORS AND TENSOR OPERATORS;218
15.1;8.1 Scalar, vector and tensor properties;218
15.2;8.2 Significance of the metric;221
15.3;8.3 Tensor properties. Symmetry restrictions;223
15.4;8.4 Symmetric and antisymmetric tensors;226
15.5;8.5 Tensor fields. Tensor operators;233
15.6;8.6 Matrix elements of tensor operators;239
15.7;8.7 Detennination of coupling coefficients;246
16;APPENDIX 1: Representations carried by harmonic functions;250
17;APPENDIX 2: Alternative bases for cubic groups;256
18;INDEX;260



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.