Buch, Englisch, 240 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 1190 g
ISBN: 978-0-7923-9423-5
Verlag: Springer Us
Neural networks and expert systems together represent two major aspects of human intelligence and therefore are appropriate for integration. Neural networks represent the visual, pattern-recognition types of intelligence, while expert systems represent the logical, reasoning processes. Together, these technologies allow applications to be developed that are more powerful than when each technique is used individually.
provides frameworks for understanding how the combination of neural networks and expert systems can produce useful hybrid systems, and illustrates the issues and opportunities in this dynamic field.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Fuzzy-Systeme
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Mathematik | Informatik Mathematik Mathematische Analysis Variationsrechnung
Weitere Infos & Material
I Fundamentals of Hybrid Systems.- 1 Overview of Neural and Symbolic Systems.- 2 Research in Hybrid Neural and Symbolic Systems.- 3 Models for Integrating Systems.- II Case Studies of Hybrid Neural Network and Expert Systems.- 4 LAM Hybrid System for Window Glazing Design.- 5 Hybrid Systems Approach to Nuclear Plant Monitoring.- 6 Chemical Tank Control System.- 7 Image Interpretation Via Fusion of Heterogeneous Sources Using a Hybrid Expert-Neural Network System.- 8 Hybrid System for Multiple Target Recognition.- III Analysis and Guidelines.- 9 Guidelines for Developing Hybrid Systems.- 10 Tools and Development Systems.- 11 Summary and the Future of Hybrid Neural Network and Expert Systems.- References.