Mendelson | Introduction to Mathematical Logic, Sixth Edition | E-Book | sack.de
E-Book

E-Book, Englisch, 513 Seiten

Reihe: Discrete Mathematics and Its Applications

Mendelson Introduction to Mathematical Logic, Sixth Edition


6. Auflage 2015
ISBN: 978-1-4822-3778-8
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 513 Seiten

Reihe: Discrete Mathematics and Its Applications

ISBN: 978-1-4822-3778-8
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



The new edition of this classic textbook, Introduction to Mathematical Logic, Sixth Edition explores the principal topics of mathematical logic. It covers propositional logic, first-order logic, first-order number theory, axiomatic set theory, and the theory of computability. The text also discusses the major results of Gödel, Church, Kleene, Rosser, and Turing.

The sixth edition incorporates recent work on Gödel’s second incompleteness theorem as well as restoring an appendix on consistency proofs for first-order arithmetic. This appendix last appeared in the first edition. It is offered in the new edition for historical considerations. The text also offers historical perspectives and many new exercises of varying difficulty, which motivate and lead students to an in-depth, practical understanding of the material.

Mendelson Introduction to Mathematical Logic, Sixth Edition jetzt bestellen!

Zielgruppe


Undergraduate students taking a mathematical logic course; general mathematics readers.


Autoren/Hrsg.


Weitere Infos & Material


Preface

Introduction

The Propositional Calculus
Propositional Connectives: Truth Tables
Tautologies
Adequate Sets of Connectives
An Axiom System for the Propositional Calculus
Independence: Many-Valued Logics
Other Axiomatizations

First-Order Logic and Model Theory
Quantifiers
First-Order Languages and Their Interpretations: Satisfiability and Truth Models
First-Order Theories
Properties of First-Order Theories
Additional Metatheorems and Derived Rules
Rule C
Completeness Theorems
First-Order Theories with Equality
Definitions of New Function Letters and Individual Constants
Prenex Normal Forms
Isomorphism of Interpretations: Categoricity of Theories
Generalized First-Order Theories: Completeness and Decidability
Elementary Equivalence: Elementary Extensions
Ultrapowers: Nonstandard Analysis
Semantic Trees
Quantification Theory Allowing Empty Domains

Formal Number Theory
An Axiom System
Number-Theoretic Functions and Relations
Primitive Recursive and Recursive Functions
Arithmetization: Gödel Numbers
The Fixed-Point Theorem: Gödel’s Incompleteness Theorem
Recursive Undecidability: Church’s Theorem
Nonstandard Models

Axiomatic Set Theory
An Axiom System
Ordinal Numbers
Equinumerosity: Finite and Denumerable Sets
Hartogs’ Theorem: Initial Ordinals—Ordinal Arithmetic
The Axiom of Choice: The Axiom of Regularity
Other Axiomatizations of Set Theory

Computability
Algorithms: Turing Machines
Diagrams
Partial Recursive Functions: Unsolvable Problems
The Kleene–Mostowski Hierarchy: Recursively Enumerable Sets
Other Notions of Computability
Decision Problems

Appendix A: Second-Order Logic

Appendix B: First Steps in Modal Propositional Logic

Appendix C: A Consistency Proof for Formal Number Theory

Answers to Selected Exercises

Bibliography

Notations

Index


Elliott Mendelson is professor emeritus at Queens College in Flushing, New York, USA. Dr. Mendelson obtained his bachelor's degree at Columbia University and his master's and doctoral degrees at Cornell University, and was elected afterward to the Harvard Society of Fellows. In addition to his other writings, he is the author of another CRC Press book Introducing Game Theory and Its Applications.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.