Menezes / Fortunato / Mangioni | Complex Networks | Buch | 978-3-642-01205-1 | sack.de

Buch, Englisch, Band 207, 225 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1150 g

Reihe: Studies in Computational Intelligence

Menezes / Fortunato / Mangioni

Complex Networks

Results of the 1st International Workshop on Complex Networks (CompleNet 2009)
1. Auflage 2009
ISBN: 978-3-642-01205-1
Verlag: Springer

Results of the 1st International Workshop on Complex Networks (CompleNet 2009)

Buch, Englisch, Band 207, 225 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1150 g

Reihe: Studies in Computational Intelligence

ISBN: 978-3-642-01205-1
Verlag: Springer


Though the reductionist approachto biology and medicine has led to several imp- tant advances, further progresses with respect to the remaining challenges require integration of representation, characterization and modeling of the studied systems along a wide range of spatial and time scales. Such an approach, intrinsically - lated to systems biology, is poised to ultimately turning biology into a more precise and synthetic discipline, paving the way to extensive preventive and regenerative medicine [1], drug discovery [20] and treatment optimization [24]. A particularly appealing and effective approach to addressing the complexity of interactions inherent to the biological systems is provided by the new area of c- plex networks [34, 30, 8, 13, 12]. Basically, it is an extension of graph theory [10], focusing on the modeling, representation, characterization, analysis and simulation ofcomplexsystemsbyconsideringmanyelementsandtheirinterconnections.C- plex networks concepts and methods have been used to study disease [17], tr- scription networks [5, 6, 4], protein-protein networks [22, 36, 16, 39], metabolic networks [23] and anatomy [40].

Menezes / Fortunato / Mangioni Complex Networks jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Session 1: Analysis of Real Networks.- Dynamics and Evolution of the International Trade Network.- Small World Behavior of the Planetary Active Volcanoes Network: Preliminary Results.- Correlation Patterns in Gene Expressions along the Cell Cycle of Yeast.- Session 2: Community Structure.- Detecting and Characterizing the Modular Structure of the Yeast Transcription Network.- Finding Overlapping Communities Using Disjoint Community Detection Algorithms.- Discovering Community Structure on Large Networks Using a Grid Computing Environment.- Finding Community Structure Based on Subgraph Similarity.- Session 3: Network Modeling.- Structural Trends in Network Ensembles.- Generalized Attachment Models for the Genesis of Graphs with High Clustering Coefficient.- Modeling Highway Networks with Path-Geographical Transformations.- Session 4: Network Dynamics.- Simplicial Complex of Opinions on Scale-Free Networks.- An Axiomatic Foundation for Epidemics on Complex Networks.- Analytical Approach to Bond Percolation on Clustered Networks.- Session 5: Applications.- Order-Wise Correlation Dynamics in Text Data.- Using Time Dependent Link Reduction to Improve the Efficiency of Topic Prediction in Co-Authorship Graphs.- Fast Similarity Search in Small-World Networks.- Detection of Packet Traffic Anomalous Behaviour via Information Entropy.- Identification of Social Tension in Organizational Networks.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.