Buch, Englisch, 349 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 705 g
Reihe: Springer INdAM Series
Buch, Englisch, 349 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 705 g
Reihe: Springer INdAM Series
ISBN: 978-981-97-0224-4
Verlag: Springer Nature Singapore
Kolmogorov equations are a fundamental bridge between the theory of partial differential equations and that of stochastic differential equations that arise in several research fields.
This volume collects a selection of the talks given at the Cortona meeting by experts in both fields, who presented the most recent developments of the theory. Particular emphasis has been given to degenerate partial differential equations, Itô processes, applications to kinetic theory and to finance.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Chapter 1. Local Regularity for the Landau Equation (with Coulomb Interaction Potential).- Chapter 2. L 2 Hypocoercivity methods for kinetic Fokker-Planck equations with factorised Gibbs states.- Chapter 3. New Perspectives on recent trends for Kolmogorov operators.- Chapter 4. Schauder estimates for Kolmogorov-Fokker-Planck operators with coefficients measurable in time and Holder continuous in space.-Chapter 5. A new proof of the geometric Soboleva embedding for generalised Kolmogorov operators.- Chapter 6. Intrinsic Taylor formula for non-homogeneous Kolmogorov-type Lie groups.- Chapter 7. Form-boundedness and sdes with singular drift.- Chapter 8. About the regularity of degenerate non-local Kolmogorov operators under diffusive perturbations.- Chapter 9. Integration by parts formula for exit times of one dimensional diffusions.- Chapter 10. On averaged control and iteration improvement for a class of multidimensional ergodicdiffusions.