Buch, Englisch, 605 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1086 g
Reihe: Springer Actuarial
Buch, Englisch, 605 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1086 g
Reihe: Springer Actuarial
ISBN: 978-3-031-12408-2
Verlag: Springer International Publishing
Statistical modeling has a wide range of applications, and, depending on the application, the theoretical aspects may be weighted differently: here the main focus is on prediction rather than explanation. Starting with a presentation of state-of-the-art actuarial models, such as generalized linear models, the book then dives into modern machine learning tools such as neural networks and text recognition to improve predictive modeling with complex features.
Providing practitioners with detailed guidance on how to apply machine learning methods to real-world data sets, and how to interpret the results without losing sight of the mathematical assumptions on which these methods are based, the book can serve as a modern basis for an actuarial education syllabus.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
Weitere Infos & Material
- 1. Introduction. - 2. Exponential Dispersion Family. - 3. Estimation Theory. - 4. Predictive Modeling and Forecast Evaluation. - 5. Generalized Linear Models. - 6. Bayesian Methods, Regularization and Expectation-Maximization. - 7. Deep Learning. - 8. Recurrent Neural Networks. - 9. Convolutional Neural Networks. - 10. Natural Language Processing. - 11. Selected Topics in Deep Learning. - 12. Appendix A: Technical Results on Networks. - 13. Appendix B: Data and Examples.