Mescher | Perturbed Gradient Flow Trees and A¿-algebra Structures in Morse Cohomology | Buch | 978-3-030-09526-0 | sack.de

Buch, Englisch, Band 6, 171 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 312 g

Reihe: Atlantis Studies in Dynamical Systems

Mescher

Perturbed Gradient Flow Trees and A¿-algebra Structures in Morse Cohomology


Softcover Nachdruck of the original 1. Auflage 2018
ISBN: 978-3-030-09526-0
Verlag: Springer International Publishing

Buch, Englisch, Band 6, 171 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 312 g

Reihe: Atlantis Studies in Dynamical Systems

ISBN: 978-3-030-09526-0
Verlag: Springer International Publishing


This book elaborates on an idea put forward by M. Abouzaid on equipping the Morse cochain complex of a smooth Morse function on a closed oriented manifold with the structure of an A8-algebra by means of perturbed gradient flow trajectories. This approach is a variation on K. Fukaya’s definition of Morse-A8-categories for closed oriented manifolds involving families of Morse functions. To make A8-structures in Morse theory accessible to a broader audience, this book provides a coherent and detailed treatment of Abouzaid’s approach, including a discussion of all relevant analytic notions and results, requiring only a basic grasp of Morse theory. In particular, no advanced algebra skills are required, and the perturbation theory for Morse trajectories is completely self-contained.
In addition to its relevance for finite-dimensional Morse homology, this book may be used as a preparation for the study of Fukaya categories in symplectic geometry. It will beof interest to researchers in mathematics (geometry and topology), and to graduate students in mathematics with a basic command of the Morse theory.
Mescher Perturbed Gradient Flow Trees and A¿-algebra Structures in Morse Cohomology jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1. Basics on Morse homology.- 2. Perturbations of gradient flow trajectories.- 3. Nonlocal generalizations.- 4. Moduli spaces of perturbed Morse ribbon trees.- 5. The convergence behaviour of sequences of perturbed Morse ribbon trees.- 6. Higher order multiplications and the A8-relations.- 7. A8-bimodule structures on Morse chain complexes.- A. Orientations and sign computations for perturbed Morse ribbon trees.


Dr. Stephan Mescher is a Research Fellow at the University of Leipzig. He graduated with a degree in Mathematics from Bielefeld University in 2008 and obtained his Ph.D. at the University of Leipzig in 2017, supervised by Prof. Matthias Schwarz.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.