E-Book, Englisch, Band 419, 0 Seiten
Meyer / Needham The Cauchy Problem for Non-Lipschitz Semi-Linear Parabolic Partial Differential Equations
Erscheinungsjahr 2015
ISBN: 978-1-316-31109-7
Verlag: Cambridge University Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, Band 419, 0 Seiten
Reihe: London Mathematical Society Lecture Note Series
ISBN: 978-1-316-31109-7
Verlag: Cambridge University Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Reaction-diffusion theory is a topic which has developed rapidly over the last thirty years, particularly with regards to applications in chemistry and life sciences. Of particular importance is the analysis of semi-linear parabolic PDEs. This monograph provides a general approach to the study of semi-linear parabolic equations when the nonlinearity, while failing to be Lipschitz continuous, is Hölder and/or upper Lipschitz continuous, a scenario that is not well studied, despite occurring often in models. The text presents new existence, uniqueness and continuous dependence results, leading to global and uniformly global well-posedness results (in the sense of Hadamard). Extensions of classical maximum/minimum principles, comparison theorems and derivative (Schauder-type) estimates are developed and employed. Detailed specific applications are presented in the later stages of the monograph. Requiring only a solid background in real analysis, this book is suitable for researchers in all areas of study involving semi-linear parabolic PDEs.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1. Introduction; 2. The bounded reaction-diffusion Cauchy problem; 3. Maximum principles; 4. Diffusion theory; 5. Convolution functions, function spaces, integral equations and equivalence lemmas; 6. The bounded reaction-diffusion Cauchy problem with f e L; 7. The bounded reaction-diffusion Cauchy problem with f e Lu; 8. The bounded reaction-diffusion Cauchy problem with f e La; 9. Application to specific problems; 10. Concluding remarks.