Meyer / Needham | The Cauchy Problem for Non-Lipschitz Semi-Linear Parabolic Partial Differential Equations | E-Book | sack.de
E-Book

E-Book, Englisch, Band 419, 0 Seiten

Reihe: London Mathematical Society Lecture Note Series

Meyer / Needham The Cauchy Problem for Non-Lipschitz Semi-Linear Parabolic Partial Differential Equations


Erscheinungsjahr 2015
ISBN: 978-1-316-31109-7
Verlag: Cambridge University Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, Band 419, 0 Seiten

Reihe: London Mathematical Society Lecture Note Series

ISBN: 978-1-316-31109-7
Verlag: Cambridge University Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Reaction-diffusion theory is a topic which has developed rapidly over the last thirty years, particularly with regards to applications in chemistry and life sciences. Of particular importance is the analysis of semi-linear parabolic PDEs. This monograph provides a general approach to the study of semi-linear parabolic equations when the nonlinearity, while failing to be Lipschitz continuous, is Hölder and/or upper Lipschitz continuous, a scenario that is not well studied, despite occurring often in models. The text presents new existence, uniqueness and continuous dependence results, leading to global and uniformly global well-posedness results (in the sense of Hadamard). Extensions of classical maximum/minimum principles, comparison theorems and derivative (Schauder-type) estimates are developed and employed. Detailed specific applications are presented in the later stages of the monograph. Requiring only a solid background in real analysis, this book is suitable for researchers in all areas of study involving semi-linear parabolic PDEs.

Meyer / Needham The Cauchy Problem for Non-Lipschitz Semi-Linear Parabolic Partial Differential Equations jetzt bestellen!

Weitere Infos & Material


1. Introduction; 2. The bounded reaction-diffusion Cauchy problem; 3. Maximum principles; 4. Diffusion theory; 5. Convolution functions, function spaces, integral equations and equivalence lemmas; 6. The bounded reaction-diffusion Cauchy problem with f e L; 7. The bounded reaction-diffusion Cauchy problem with f e Lu; 8. The bounded reaction-diffusion Cauchy problem with f e La; 9. Application to specific problems; 10. Concluding remarks.


Meyer, J. C.
J. C. Meyer is University Fellow in the School of Mathematics at the University of Birmingham, UK. His research interests are in reaction-diffusion theory.

Needham, D. J.
D. J. Needham is Professor of Applied Mathematics at the University of Birmingham, UK. His research areas are applied analysis, reaction-diffusion theory and nonlinear waves in fluids. He has published over 100 papers in high-ranking journals of applied mathematics, receiving over 2000 citations.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.