Microfluidics in Cell Biology: Part A: Microfluidics for Multicellular Systems | Buch | 978-0-12-814280-6 | sack.de

Buch, Englisch, 273 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 820 g

Microfluidics in Cell Biology: Part A: Microfluidics for Multicellular Systems

Buch, Englisch, 273 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 820 g

ISBN: 978-0-12-814280-6
Verlag: William Andrew Publishing


Microfluidics in Cell Biology Part A: Volume 146, the latest release in the Methods in Cell Biology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Unique to this updated volume are sections on Cell monolayers/spheroids, Collective migration in microtubes, Leukocyte adhesion dynamics on endothelial monolayers under flow, Constrained spheroid for perfusion culture, Cells in droplet arrays, Heart on chips, Kidney on chips, Liver on chips and hepatic immune responses, Gut on chips, 3D microvascular model-based lymphoma model, Blood brain barrier on chips, Multi-organ-on-a-chip for pharmacokinetic analysis, Cancer immunotherapy on chips, and more.
Microfluidics in Cell Biology: Part A: Microfluidics for Multicellular Systems jetzt bestellen!

Weitere Infos & Material


Section 1: Microfluidics for Cell Monolayers/Spheroids 1. Tubular microscaffolds for studying collective cell migration Wang Xi, Surabhi Sonam, Chwee Teck Lim and Benoit Ladoux 2. Endothelial cell monolayer-based microfluidic systems mimicking complex in vivo microenvironments for the study of leukocyte dynamics in inflamed blood vessels Jaehyun Lee, Hyung Kyu Huh, Sung Ho Park, Sang Joon Lee and Junsang Doh 3. Constrained spheroids/organoids in perfusion culture Fan Lee, Ciprian Iliescu, Fang Yu and Hanry Yu

Section 2: Organs on Chips 4. Generation of functional cardiac microtissues in a beating heart-on-a-chip Giovanni Stefano Ugolini, Roberta Visone, Daniela Cruz-Moreira, Andrea Mainardi and Marco Rasponi 5. Kidney on chips Jeonghwan Lee, Kipyo Kim and Sejoong Kim 6. Liver sinusoid on a chip Yu Du, Ning Li and Mian Long 7. Pathomimetic modeling of human intestinal diseases and underlying host-gut microbiome interactions in a gut-on-a-chip Woojung Shin and Hyun Jung Kim 8. 3D in vitro microvascular model-based lymphoma model Robert G. Mannino, Pallab Pradhan, Krishnendu Roy and Wilbur A. Lam 9. Blood-brain barrier on a chip Eyleen Goh 10. Pharmacokinetic-based multi-organ chip for recapitulating organ interactions Jong Hwan Sung 11. Studying TCR T cell anti-tumor activity in a microfluidic intrahepatic tumor model Giulia Adriani, Andrea Pavesi and Roger D. Kamm

Section 3: Microfluidics for Model Organisms 12. Microfluidics for mechanobiology of model organisms Anna A. Kim, Adam L. Nekimken, Sylvia Fechner, Lucy E. O'Brien and Beth L. Pruitt


Fletcher, Daniel
Dr. Fletcher and his team develops diagnostic technologies and studies mechanical regulation of membrane and cytoskeleton organization in the context of cell motility, signaling, and host-pathogen interactions. His lab specialize in development of optical microscopy, force microscopy, and microfluidic technologies to understand fundamental organizational principles through both in vitro reconstitution and live cell experiments. Recent work includes investigating the mechano-biochemistry of branched actin network assembly with force microscopy, studying membrane deformation by protein crowding and oligomerization with model membranes, and reconstituting spindle scaling in encapsulated cytoplasmic extracts. The long-term goal of his work is to understand and harness spatial organization for therapeutic applications in cancer and infectious diseases.

Piel, Matthieu
Matthieu Piel and his team develop microfabricated and microfluidic tools to quantitatively control the physical parameters of the cell's environment and study how cells grow, divide and migrate. The team focused on how physical confinement, geometry and forces affect cell division and cell migration. The general aim of these studies is to draw a line between the physics of the active matter cells are made of and the behavior of cells in the complex environment of tissues, in the context of the immune response and tumor development.

Doh, Junsang
Junsang Doh is an associate professor of Mechanical Engineering/Interdisciplinary Bioscience and Bioengineering (I-Bio) in POSTECH, South Korea. Prof. Doh's group develops and utilizes engineering tools such as microfabrication/imaging/mechanics to study fundamental aspects of immune cell behaviors, including synapse-based cell-cell interactions and motility under complex microenvironments, in the context of cancer immunotherapy.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.