Mishra / Komarasamy | Friction Stir Welding of High Strength 7XXX Aluminum Alloys | Buch | 978-0-12-809465-5 | sack.de

Buch, Englisch, 120 Seiten, Format (B × H): 149 mm x 228 mm, Gewicht: 230 g

Mishra / Komarasamy

Friction Stir Welding of High Strength 7XXX Aluminum Alloys


Erscheinungsjahr 2016
ISBN: 978-0-12-809465-5
Verlag: Elsevier Science & Technology

Buch, Englisch, 120 Seiten, Format (B × H): 149 mm x 228 mm, Gewicht: 230 g

ISBN: 978-0-12-809465-5
Verlag: Elsevier Science & Technology


Friction Stir Welding of High Strength 7XXX Aluminum Alloys is the latest edition in the Friction Stir series and summarizes the research and application of friction stir welding to high strength 7XXX series alloys, exploring the past and current developments in the field.

Friction stir welding has demonstrated significant benefits in terms of its potential to reduce cost and increase manufacturing efficiency of industrial products in transportation, particularly the aerospace sector. The 7XXX series aluminum alloys are the premium aluminum alloys used in aerospace. These alloys are typically not weldable by fusion techniques and considerable effort has been expended to develop friction stir welding parameters. Research in this area has shown significant benefit in terms of joint efficiency and fatigue performance as a result of friction stir welding. The book summarizes those results and includes discussion of the potential future directions for further optimization.

Mishra / Komarasamy Friction Stir Welding of High Strength 7XXX Aluminum Alloys jetzt bestellen!

Weitere Infos & Material


1. Introduction2. Basic physical metallurgy of 7XXX alloys3. Friction stir welding - Overview4. Temperature distribution5. Microstructural evolution in various zones6. Mechanical properties7. Corrosion8. Physical metallurgy based guidelines for obtaining high joint efficiency9. Summary and future outlook10. References


Komarasamy, Mageshwari
Mageshwari Komarasamy is a Post Doctoral Research Associate with the Center for Friction Stir Processing, Department of Materials Science and Engineering, University of North Texas. She has been working on friction stir welding of high strength aluminum alloys and has published a number of papers on high entropy alloys. Her projects have included studies of Double groove friction stir welding and characterization of 7050-T7451 Al alloy; Characterization of 3 inch thick friction stir processed 7050-T7451 Al welds; Friction stir welding and joint efficiency study of Al-Mg-Sc alloys; Friction stir processing of high entropy alloys; Forced mixing of immiscible Cu-Nb-Ag alloy via friction stir processing; and deformation mechanism of Al0.1CoCrFeNi high entropy alloy and its temperature, strain rate and grain size dependence. She has presented at a number of Conferences including the Symposium on High Entropy Alloys II, TMS Annual Meeting 2014 invited presentation; Ultrafine Grained Materials VIII, TMS Annual Meeting 2014; Fatigue in Materials: Fundamentals, Multiscale Modeling and Prevention, TMS Annual Meeting 2014; and ICME: Linking Microstructure to Structural Design Requirements, TMS Annual Meeting 2014.

Mishra, Rajiv S.
Prof. Rajiv Mishra (Ph.D. in Metallurgy from University of Sheffield) is a Regents Professor at the University of North Texas and founder of Optimus Alloys LLC. He is a Fellow of ASM International. He is a past-chair of the Structural Materials Division of TMS and served on the TMS Board of Directors (2013-16). He has authored/co-authored more than 450 papers in peer-reviewed journals and proceedings and is principal inventor of four U.S. patents. His current Google Scholar h-index is 95 and his papers have been cited more than 43000 times. He has co-authored three books; (1) Friction Stir Welding and Processing, (2) Metallurgy and Design of Alloys with Hierarchical Microstructures, (3) High Entropy Materials: Processing, Properties, and Applications. He has edited or co-edited fifteen TMS conference proceedings. He was an associate editor of Journal of Materials Processing Technology and is the founding editor of a short book series on Friction Stir Welding and Processing published by Elsevier and has co-authored seven short books in this series. He is a recipient of TMS-SMD Distinguished Scientist Award in 2020 and TMS-MPMD Distinguished Scientist Award in 2024. He is an adjunct professor in the department of Materials Science and Engineering at North Carolina State University. Most recently, he has founded Optimus Alloys LLC for commercialization of research efforts and serves as the Chief Scientific Advisor. Optimus Alloys is focused on process-specific alloy design for additive manufacturing of high-performance components.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.