Buch, Englisch, 244 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 380 g
Implementing FAIR Principles
Buch, Englisch, 244 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 380 g
ISBN: 978-1-032-09570-7
Verlag: Chapman and Hall/CRC
Data Stewardship for Open Science: Implementing FAIR Principles has been written with the intention of making scientists, funders, and innovators in all disciplines and stages of their professional activities broadly aware of the need, complexity, and challenges associated with open science, modern science communication, and data stewardship. The FAIR principles are used as a guide throughout the text, and this book should leave experimentalists consciously incompetent about data stewardship and motivated to respect data stewards as representatives of a new profession, while possibly motivating others to consider a career in the field.
The ebook, avalable for no additional cost when you buy the paperback, will be updated every 6 months on average (providing that significant updates are needed or avaialble). Readers will have the opportunity to contribute material towards these updates, and to develop their own data management plans, via the free Data Stewardship Wizard.
Zielgruppe
Academic and Professional Practice & Development
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Naturwissenschaften Biowissenschaften Biowissenschaften
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftsstatistik, Demographie
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Spiele-Programmierung, Rendering, Animation
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
Weitere Infos & Material
Introduction. Data cycle step 1: Design of experiment. Data cycle step 2: Data design and planning. Data cycle step 3: Data Capture (equipment phase). Data cycle step 4: Data Processing and Curation. Data cycle step 5 Data Linking and ‘Integration’. Data cycle step 6: Data Analysis, Interpretation. Data cycle step 7: Information and insight in publishing.