E-Book, Englisch, 1036 Seiten
Moran / Holst / Brennan Microbial Glycobiology
1. Auflage 2009
ISBN: 978-0-08-092324-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Structures, Relevance and Applications
E-Book, Englisch, 1036 Seiten
ISBN: 978-0-08-092324-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
This book presents in an easy-to-read format a summary of the important central aspects of microbial glycobiology, i.e. the study of carbohydrates as related to the biology of microorganisms. Microbial glycobiology represents a multidisciplinary and emerging area with implications for a range of basic and applied research fields, as well as having industrial, medical and biotechnological implications.
Key Features and Benefits
* Individual chapters provided by leading international scientists in the field yield insightful, concise and stimulating reviews.
- Provides researchers with an overview and synthesis of the latest research
* Each chapter begins with a brief 200 word Summary/Abstract detailing the topic and focus of the chapter, as well as the concepts to be addressed.
- Allows researchers to see at a glance what each chapter will cover
* Each chapter includes a Research Focus Box
- Identifies important problems that still need to be solved and areas that require further investigation
Autoren/Hrsg.
Weitere Infos & Material
1;FRONT COVER;1
2;MICROBIAL GLYCOBIOLOGY: STRUCTURES, RELEVANCE AND APPLICATIONS;4
3;COPYRIGHT PAGE;5
4;CONTENTS;8
5;LIST OF CONTRIBUTORS;12
6;PREFACE;18
7;PART I: MICROBIAL GLYCOLIPIDS, GLYCOPROTEINS AND GLYCOPOLYMERS;20
7.1;Chapter 1. Overview of the glycosylated components of the bacterial cell envelope;22
7.1.1;SUMMARY;22
7.1.2;1. INTRODUCTION – THE BACTERIAL CELL ENVELOPE ENCOUNTERING ENVIRONMENTAL CHALLENGES;22
7.1.3;2. THE GRAM-NEGATIVE CELL ENVELOPE;23
7.1.4;3. THE GRAM-POSITIVE CELL ENVELOPE;27
7.1.5;4. THE MYCOBACTERIAL CELL ENVELOPE;29
7.1.6;5. THE ARCHAEAL CELL ENVELOPES AND S-LAYERS;31
7.1.7;6. CONCLUSIONS;31
7.1.8;ACKNOWLEDGEMENTS;31
7.1.9;REFERENCES;31
7.2;Chapter 2. Bacterial cell envelope peptidoglycan;34
7.2.1;SUMMARY;34
7.2.2;1. INTRODUCTION;34
7.2.3;2. STRUCTURAL VARIATION IN BACTERIAL PEPTIDOGLYCAN;35
7.2.4;3. BIOPHYSICAL PROPERTIES OF PEPTIDOGLYCAN;42
7.2.5;4. THE MOLECULAR ARCHITECTURE OF PEPTIDOGLYCAN;42
7.2.6;5. CONCLUSIONS;43
7.2.7;ACKNOWLEDGEMENTS;43
7.2.8;REFERENCES;43
7.3;Chapter 3. Core region and lipid A components of lipopolysaccharides;48
7.3.1;SUMMARY;48
7.3.2;1. INTRODUCTION;48
7.3.3;2. GENERAL STRUCTURAL FEATURES OF THE LIPID A MOLECULE;50
7.3.4;3. LIPOPOLYSACCHARIDES OF MAMMALIAN PATHOGENIC BACTERIA: THE CASE OF B. CEPACIA COMPLEX;53
7.3.5;4. PLANT PATHOGENIC AGROBACTERIUM AND XANTHOMONAS LPS AND THE ACTIVATION OF INNATE IMMUNE RESPONSE IN PLANTS;54
7.3.6;5. STRUCTURAL ELUCIDATION OF LIPID A;56
7.3.7;6. GENERAL STRUCTURAL FEATURES OF THE CORE REGION;56
7.3.8;7. CORE STRUCTURES OF VARIOUS BACTERIA;57
7.3.9;8. CONCLUSIONS;68
7.3.10;ACKNOWLEDGEMENTS;69
7.3.11;REFERENCES;69
7.4;Chapter 4. O-Specific polysaccharides of Gram-negative bacteria;76
7.4.1;SUMMARY;76
7.4.2;1. INTRODUCTION;76
7.4.3;2. COMPOSITION OF O-PSs;77
7.4.4;3. REPETITIVE O-PS STRUCTURES;81
7.4.5;4. NON-REPETITIVE MOTIFS;85
7.4.6;5. CONCLUSIONS;87
7.4.7;REFERENCES;88
7.5;Chapter 5. Teichoic acids, lipoteichoic acids and related cell wall glycopolymers of Gram-positive bacteria;94
7.5.1;SUMMARY;94
7.5.2;1. INTRODUCTION;94
7.5.3;2. TEICHOIC ACID STRUCTURES;95
7.5.4;3. BIOSYNTHESIS OF WTAs AND LTA;98
7.5.5;4. ROLES OF WTAs AND LTA IN BACTERIAL PHYSIOLOGY;102
7.5.6;5. TEICHOIC ACIDS AND HOST CELL RECEPTOR INTERACTION;103
7.5.7;6. CONCLUSIONS AND PERSPECTIVES;105
7.5.8;ACKNOWLEDGEMENTS;106
7.5.9;REFERENCES;106
7.6;Chapter 6. Bacterial capsular polysaccharides and exopolysaccharides;112
7.6.1;SUMMARY;112
7.6.2;1. INTRODUCTION;112
7.6.3;2. CARBOHYDRATE COMPONENTS OF CAPSULAR AND EXO-POLYSACCHARIDES;113
7.6.4;3. NON-CARBOHYDRATE SUBSTITUENTS OF CAPSULAR AND EXOPOLYSACCHARIDES;114
7.6.5;4. STRUCTURE OVERVIEW OF BACTERIAL POLYSACCHARIDES;114
7.6.6;5. POLYSACCHARIDE SHAPES;119
7.6.7;6. BIOLOGICAL FUNCTIONS OF CAPSULAR AND EXOPOLYSACCHARIDES;120
7.6.8;7. EXOPOLYSACCHARIDES OF THE BURKHOLDERIA CEPACIA COMPLEX: A CASE STUDY;122
7.6.9;8. CONCLUSION;124
7.6.10;ACKNOWLEDGEMENTS;125
7.6.11;REFERENCES;125
7.7;Chapter 7. Bacterial surface layer glycoproteins and "non-classical" secondary cell wall polymers;128
7.7.1;SUMMARY;128
7.7.2;1. INTRODUCTION;129
7.7.3;2. BACTERIAL AND ARCHAEAL S-LAYERS;129
7.7.4;3. GENERAL FEATURES OF GLYCOSYLATED S-LAYER PROTEINS;130
7.7.5;4. GENETICS;133
7.7.6;5. BIOSYNTHESIS;134
7.7.7;6. THE "NON-CLASSICAL" GROUP OF SECONDARY CELL WALL POLYMERS;138
7.7.8;7. OUTLOOK;143
7.7.9;ACKNOWLEDGEMENTS;144
7.7.10;REFERENCES;144
7.8;Chapter 8. Glycosylation of bacterial and archaeal flagellins;148
7.8.1;SUMMARY;148
7.8.2;1. INTRODUCTION;148
7.8.3;2. FLAGELLAR GLYCAN STRUCTURES;150
7.8.4;3. STRUCTURAL ANALYSIS OF FLAGELLAR GLYCANS;155
7.8.5;4. FLAGELLAR GLYCAN BIOSYNTHETIC PATHWAYS;156
7.8.6;5. CONCLUSIONS AND FUTURE PERSPECTIVES;159
7.8.7;ACKNOWLEDGEMENTS;162
7.8.8;REFERENCES;162
7.9;Chapter 9. Glycosylated components of the mycobacterial cell wall: structure and function;166
7.9.1;SUMMARY;166
7.9.2;1. CHARACTERISTIC FEATURES OF MYCOBACTERIUM SPP.;166
7.9.3;2. THE MYCOBACTERIAL ENVELOPE;167
7.9.4;3. THE MYCOBACTERIAL CELL WALL SKELETON: THE MYCOLYLARABINOGALACTAN-PG COMPLEX;168
7.9.5;4. THE SOLUBLE CROSS-SPECIES GLYCOCONJUGATES OF THE MYCOBACTERIAL CELL WALL;170
7.9.6;5. THE SPECIES AND SUB-SPECIES SPECIFIC SOLUBLE GLYCOCONJUGATES OF MYCOBACTERIAL CELL WALLS;177
7.9.7;6. CONCLUSIONS;181
7.9.8;ACKNOWLEDGEMENTS;181
7.9.9;REFERENCES;181
7.10;Chapter 10. Glycoconjugate structure and function in fungal cell walls;188
7.10.1;SUMMARY;188
7.10.2;1. INTRODUCTION;188
7.10.3;2. OVERALL STRUCTURE;189
7.10.4;3. WALL POLYSACCHARIDES;189
7.10.5;4. CELL WALL GLYCOPROTEINS OF ASCOMYCETOUS FUNGI;191
7.10.6;5. CHARACTERISTICS OF FUNGAL CELL WALL GLYCOPROTEINS;193
7.10.7;6. THE MANNOPROTEIN GLYCANS;195
7.10.8;7. FUNCTIONS OF WALL GLYCOPROTEINS;198
7.10.9;8. DYNAMICS OF THE FUNGAL WALL PROTEOME;199
7.10.10;9. CONCLUSIONS;200
7.10.11;ACKNOWLEDGEMENTS;201
7.10.12;REFERENCES;201
7.11;Chapter 11. Cytoplasmic carbohydrate molecules: trehalose and glycogen;204
7.11.1;SUMMARY;204
7.11.2;1. INTRODUCTION;204
7.11.3;2. OCCURRENCE, DISTRIBUTION AND FUNCTION OF GLYCOGEN;205
7.11.4;3. STRUCTURE OF GLYCOGEN;206
7.11.5;4. BIOSYNTHESIS OF GLYCOGEN;206
7.11.6;5. DEGRADATION OF GLYCOGEN;209
7.11.7;6. OCCURRENCE AND DISTRIBUTION OF TREHALOSE;210
7.11.8;7. BIOSYNTHESIS OF TREHALOSE;211
7.11.9;8. FUNCTIONS OF TREHALOSE;215
7.11.10;9. CONCLUSIONS;216
7.11.11;REFERENCES;218
7.12;Chapter 12. Glycosylated compounds of parasitic protozoa;222
7.12.1;SUMMARY;222
7.12.2;1. INTRODUCTION;222
7.12.3;2. THE SURFACE COATS OF PARASITIC PROTOZOA – AN OVERVIEW;224
7.12.4;3. PROTEIN-LINKED AND FREE GPI GLYCOLIPIDS;225
7.12.5;4. N-LINKED GLYCANS;232
7.12.6;5. O-LINKED GLYCANS;236
7.12.7;6. PHOSPHOGLYCOSYLATION;238
7.12.8;7. PARASITE CYST WALL POLYSACCHARIDES;241
7.12.9;8. INTRACELLULAR RESERVE GLYCANS;242
7.12.10;9. CONCLUSIONS;242
7.12.11;ACKNOWLEDGEMENTS;244
7.12.12;REFERENCES;244
7.13;Chapter 13. Analytical approaches towards the structural characterization of microbial wall glycopolymers;252
7.13.1;SUMMARY;252
7.13.2;1. INTRODUCTION;252
7.13.3;2. ISOLATION AND PURIFICATION OF BACTERIAL GLYCAN STRUCTURES;253
7.13.4;3. NMR TECHNIQUES EMPLOYED FOR STRUCTURAL CHARACTERIZATION OF GLYCANS;254
7.13.5;4. MASS SPECTROMETRY OF GLYCANS;261
7.13.6;5. CONCLUSIONS;267
7.13.7;REFERENCES;268
7.14;Chapter 14. Single-molecule characterization of microbial polysaccharides;272
7.14.1;SUMMARY;272
7.14.2;1. INTRODUCTION;272
7.14.3;2. ATOMIC FORCE MICROSCOPY AND ITS APPLICATION TO MICROBIAL PSs;273
7.14.4;3. MEASUREMENTS OF MECHANICAL PROPERTIES OF SINGLE PSs;274
7.14.5;4. ATOMIC FORCE MICROSCOPY AS A TOOL TO INVESTIGATE FUNCTION OF MICROBIAL PSs;278
7.14.6;5. SINGLE-MOLECULE STUDIES OF MICROBIAL PSs USING OPTICAL TECHNIQUES;283
7.14.7;6. CONCLUSIONS;284
7.14.8;ACKNOWLEDGEMENTS;285
7.14.9;REFERENCES;285
7.15;Chapter 15. Viral surface glycoproteins in carbohydrate recognition: structure and modelling;288
7.15.1;SUMMARY;288
7.15.2;1. INTRODUCTION;288
7.15.3;2. INFLUENZA VIRUS;289
7.15.4;3. PARAINFLUENZA;293
7.15.5;4. DENGUE VIRUS;294
7.15.6;5. ROTAVIRUS;296
7.15.7;6. CONCLUSIONS;298
7.15.8;REFERENCES;298
8;PART II: SYNTHESIS OF MICROBIAL GLYCOSYLATED COMPONENTS;304
8.1;A. Biosynthesis and biosynthetic processes;304
8.1.1;Chapter 16. Biosynthesis of bacterial peptidoglycan;306
8.1.1.1;SUMMARY;306
8.1.1.2;1. INTRODUCTION;306
8.1.1.3;2. ASSEMBLY OF THE MONOMER UNIT;307
8.1.1.4;3. TRANSLOCATION OF THE MONOMER UNIT;315
8.1.1.5;4. POLYMERIZATION OF THE MONOMER UNIT;316
8.1.1.6;5. VARIATIONS IN PEPTIDOGLYCAN BIOSYNTHESIS;318
8.1.1.7;6. IN VIVO FUNCTIONING OF THE MONOMER UNIT ASSEMBLY;318
8.1.1.8;7. IN VIVO FUNCTIONING OF THE POLYMERIZATION PROCESS;319
8.1.1.9;8. INHIBITION OF PEPTIDOGLYCAN BIOSYNTHESIS;320
8.1.1.10;9. CONCLUDING REMARKS;320
8.1.1.11;ACKNOWLEDGEMENTS;320
8.1.1.12;REFERENCES;321
8.1.2;Chapter 17. Biosynthesis and membrane assembly of lipid A;324
8.1.2.1;SUMMARY;324
8.1.2.2;1. INTRODUCTION;324
8.1.2.3;2. THE CONSTITUTIVE LIPID A BIOSYNTHETIC PATHWAY;325
8.1.2.4;3. TRANSPORT;328
8.1.2.5;4. MODIFICATION OF THE Kdo-LIPID A DOMAIN OF LPS;328
8.1.2.6;5. CONCLUSIONS;333
8.1.2.7;ACKNOWLEDGEMENTS;334
8.1.2.8;REFERENCES;334
8.1.3;Chapter 18. Biosynthesis of O-antigen chains and assembly;338
8.1.3.1;SUMMARY;338
8.1.3.2;1. INTRODUCTION;338
8.1.3.3;2. THE E. COLI K-12 (O16) O-ANTIGEN;339
8.1.3.4;3. S. ENTERICA LT2 AND A FAMILY OF O-ANTIGENS;341
8.1.3.5;4. INITIAL TRANSFERASES THAT INITIATE O-ANTIGEN SYNTHESIS;341
8.1.3.6;5. OVERVIEW OF THE WZX/WZY PATHWAY;343
8.1.3.7;6. THE ABC TRANSPORTER PATHWAY;349
8.1.3.8;7. THE SYNTHASE PATHWAY;350
8.1.3.9;8. CONCLUSIONS;350
8.1.3.10;REFERENCES;352
8.1.4;Chapter 19. Biosynthesis of cell wall teichoic acid polymers;356
8.1.4.1;SUMMARY;356
8.1.4.2;1. INTRODUCTION;356
8.1.4.3;2. MODEL OF TEICHOIC ACID BIOSYNTHESIS;358
8.1.4.4;3. BIOSYNTHESIS OF WTA PRECURSORS;358
8.1.4.5;4. STUDYING MEMBRANE ACTIVITIES;361
8.1.4.6;5. LINKAGE UNIT GLYCOSYLTRANSFERASES;362
8.1.4.7;6. TEICHOIC ACID POLYMER BIOSYNTHESIS;363
8.1.4.8;7. OUTSTANDING ISSUES;366
8.1.4.9;8. CONCLUSIONS;366
8.1.4.10;ACKNOWLEDGEMENTS;367
8.1.4.11;REFERENCES;367
8.1.5;Chapter 20. Biosynthesis and assembly of capsular polysaccharides;370
8.1.5.1;SUMMARY;370
8.1.5.2;1. INTRODUCTION;370
8.1.5.3;2. BIOSYNTHESIS AND TRANSPORT OF CPSs ACROSS THE INNER MEMBRANE;371
8.1.5.4;3. CAPSULAR POLYSACCHARIDE EXPORT ACROSS THE OUTER MEMBRANE;380
8.1.5.5;4. BRIDGING THE GAP BETWEEN THE INNER AND OUTER MEMBRANES;382
8.1.5.6;5. CELL-SURFACE ATTACHMENT OF THE CPS;384
8.1.5.7;6. CONCLUSIONS;384
8.1.5.8;ACKNOWLEDGEMENTS;385
8.1.5.9;REFERENCES;385
8.1.6;Chapter 21. Biosynthesis of the mycobacterial cell envelope components;394
8.1.6.1;SUMMARY;394
8.1.6.2;1. MYCOBACTERIAL GLYCOSYLTRANSFERASES;394
8.1.6.3;2. BIOCHEMISTRY AND GENETICS OF PEPTIDOGLYCAN (PG) SYNTHESIS;396
8.1.6.4;3. BIOCHEMISTRY AND GENETICS OF AG SYNTHESIS;397
8.1.6.5;4. BIOSYNTHESIS AND GENETICS OF THE PHOSPHATIDYLINOSITOL-(PI-) CONTAINING PHOSPHATIDYLINOSITOL-MANNOSIDES (PIMS), LMs AND LAMs;400
8.1.6.6;5. BIOSYNTHESIS AND GENETICS OF THE GLYCOPEPTIDOLIPIDS;402
8.1.6.7;6. BIOSYNTHESIS AND GENETICS OF THE PHTHIOCEROL-CONTAINING LIPIDS;403
8.1.6.8;7. BIOSYNTHESIS OF THE TREHALOSE-CONTAINING GLYCOLIPIDS;406
8.1.6.9;8. CONCLUSIONS;406
8.1.6.10;ACKNOWLEDGEMENTS;407
8.1.6.11;REFERENCES;407
8.1.7;Chapter 22. Biosynthesis of fungal and yeast glycans;412
8.1.7.1;SUMMARY;412
8.1.7.2;1. INTRODUCTION;412
8.1.7.3;2. PRECURSORS FOR GLYCAN SYNTHESIS;413
8.1.7.4;3. FUNGAL PROTEIN GLYCOSYLATION;414
8.1.7.5;4. FUNGAL GLYCOLIPIDS;421
8.1.7.6;5. FUNGAL CELL WALL POLYMERS;423
8.1.7.7;6. INTRACELLULAR GLYCANS;426
8.1.7.8;7. EXOPOLYSACCHARIDES;426
8.1.7.9;8. CONCLUSIONS;427
8.1.7.10;ACKNOWLEDGEMENTS;428
8.1.7.11;REFERENCES;428
8.2;B. Chemical synthesis;432
8.2.1;Chapter 23. Chemical synthesis of bacterial lipid A;434
8.2.1.1;SUMMARY;434
8.2.1.2;1. INTRODUCTION;434
8.2.1.3;2. EARLY CHEMICAL SYNTHESES OF BACTERIAL LIPID A;435
8.2.1.4;3. IMPROVED SYNTHESIS OF LIPID A ANALOGUES;437
8.2.1.5;4. SYNTHESIS OF LIPID A CONTAINING AN UNSATURATED FATTY ACYL GROUP;442
8.2.1.6;5. CONCLUDING REMARKS;443
8.2.1.7;REFERENCES;445
8.2.2;Chapter 24. Chemical synthesis of the core oligosaccharide of bacterial lipopolysaccharide;448
8.2.2.1;SUMMARY;448
8.2.2.2;1. INTRODUCTION;448
8.2.2.3;2. SYNTHESIS OF 3-DEOXY-D-MANNO-OCT-2-ULOSONIC ACID (Kdo)- AND D-GLYCERO-D-TALO-OCT-2-ULOSONIC ACID (Ko)- CONTAINING CORE STRUCTURES;449
8.2.2.4;3. SYNTHESIS OF HEPTOSE-CONTAINING CORE STRUCTURES;457
8.2.2.5;4. SYNTHESIS OF PHOSPHORYLATED CORE UNITS;466
8.2.2.6;5. SYNTHESIS OF OUTER CORE UNITS;468
8.2.2.7;6. CONCLUDING REMARKS;469
8.2.2.8;ACKNOWLEDGEMENTS;471
8.2.2.9;REFERENCES;471
8.2.3;Chapter 25. Chemical synthesis of lipoteichoic acid and derivatives;474
8.2.3.1;SUMMARY;474
8.2.3.2;1. INTRODUCTION;474
8.2.3.3;2. VAN BOOM'S SYNTHESIS OF S. AUREUS LTA TYPE I;475
8.2.3.4;3. KUSUMOTO'S SYNTHESIS OF LTA FRAGMENTS FROM ENTEROCOCCUS HIRAE AND STREPTOCOCCUS PYOGENES;480
8.2.3.5;4. SCHMIDT'S SYNTHESIS OF LTA TYPE I FROM S. AUREUS;488
8.2.3.6;5. CONCLUSION;492
8.2.3.7;REFERENCES;494
8.2.4;Chapter 26. Chemical synthesis of parasitic glycoconjugates and phosphoglycans;496
8.2.4.1;SUMMARY;496
8.2.4.2;1. INTRODUCTION;496
8.2.4.3;2. CHEMICAL SYNTHESIS OF PARASITIC GLYCOCONJUGATES (GPI ANCHORS);498
8.2.4.4;3. CHEMICAL SYNTHESIS OF PARASITIC PHOSPHOGLYCANS OF LEISHMANIA;550
8.2.4.5;4. CONCLUSIONS AND FUTURE PERSPECTIVES;560
8.2.4.6;REFERENCES;564
9;PART III: MICROBE–HOST GLYCOSYLATED INTERACTIONS;568
9.1;Chapter 27. Bacterial lectin-like interactions in cell recognition and adhesion;570
9.1.1;SUMMARY;570
9.1.2;1. INTRODUCTION;570
9.1.3;2. MANNOSE-SPECIFIC BACTERIAL LECTINS;574
9.1.4;3. FUCOSE-SPECIFIC BACTERIAL LECTINS;574
9.1.5;4. GALACTOSE AND GalNAc-SPECIFIC BACTERIAL LECTINS;575
9.1.6;5. N-ACETYLGLUCOSAMINE-SPECIFIC BACTERIAL LECTINS;575
9.1.7;6. TISSUE TROPISM OF UPEC;576
9.1.8;7. UTILIZING GLYCAN ARRAY TECHNOLOGY TO IDENTIFY AND CHARACTERIZE NOVEL BACTERIA–CARBOHYDRATE INTERACTIONS;578
9.1.9;8. INHIBITORS OF LECTIN-MEDIATED ADHESION OF BACTERIA TO HOST CELLS;579
9.1.10;9. CONCLUSIONS;581
9.1.11;ACKNOWLEDGEMENTS;581
9.1.12;REFERENCES;581
9.2;Chapter 28. Lectin-like interactions in virus–cell recognition: human immunodeficiency virus and C-type lectin interactions;586
9.2.1;SUMMARY;586
9.2.2;1. INTRODUCTION;586
9.2.3;2. MAKING IT STICK: Env MEDIATES HIV ATTACHMENT AND ENTRY INTO HOST CELLS;588
9.2.4;3. PROMOTION OF HIV CAPTURE, TRANS-INFECTION AND DISSEMINATION BY DC-SIGN – THE PARADIGM REVISITED;589
9.2.5;4. BINDING OF HIV TO DC-SIGN ON B-CELLS AND PLATELETS – MODULATION OF IMMUNE RESPONSES AND TRANS-INFECTION OF T-CELLS;594
9.2.6;5. IMPACT OF DC-SIGN POLYMORPHISMS ON THE SUSCEPTIBILITY TO HIV INFECTION;595
9.2.7;6. LANGERIN ON LANGERHANS CELLS – BARRIER AGAINST HIV TRANSMISSION?;596
9.2.8;7. DC-SIGNR AND LSECtin – CONSEQUENCES OF HIV CAPTURE BY VASCULAR ENDOTHELIAL CELLS;596
9.2.9;8. CONCLUSIONS;597
9.2.10;ACKNOWLEDGEMENTS;598
9.2.11;REFERENCES;598
9.3;Chapter 29. Sialic acid-specific microbial lectins;604
9.3.1;SUMMARY;604
9.3.2;1. INTRODUCTION;604
9.3.3;2. ROLE OF SIALIC ACID-SPECIFIC MICROBIAL LECTINS IN HOST CELL ATTACHMENT;605
9.3.4;3. CONSERVED BINDING SITE OF SIALIC ACID-SPECIFIC MICROBIAL LECTINS;610
9.3.5;4. SIALIC ACID-BINDING DOMAIN ASSOCIATED WITH BACTERIAL SIALIC ACID TRANSPORT SYSTEMS;612
9.3.6;5. CONCLUSIONS;614
9.3.7;REFERENCES;614
9.4;Chapter 30. Bacterial toxins and their carbohydrate receptors at the host–pathogen interface;618
9.4.1;SUMMARY;618
9.4.2;1. INTRODUCTION;618
9.4.3;2. TOXIN RECEPTOR GSL-BINDING;620
9.4.4;3. INTRACELLULAR TRAFFICKING OF GSLs;624
9.4.5;4. INTRACELLULAR TOXIN TRAFFIC;625
9.4.6;5. GLYCOSPHINGOLIPID RECEPTORS AND TOXIN-INDUCED PATHOLOGY;628
9.4.7;6. TOXIN-GSL-MEDIATED SIGNALLING;629
9.4.8;7. Gb[sub(3)] AND DRUG RESISTANCE;630
9.4.9;8. VEROTOXIN1 AS AN ANTI-NEOPLASTIC;631
9.4.10;9. VEROTOXIN OPENS A WINDOW FOR HUMAN IMMUNODEFICIENCY VIRUS (HIV) THERAPY;632
9.4.11;10. CONCLUSIONS;633
9.4.12;REFERENCES;633
9.5;Chapter 31. Toll-like receptor recognition of lipoglycans, glycolipids and lipopeptides;642
9.5.1;SUMMARY;642
9.5.2;1. INTRODUCTION;642
9.5.3;2. TOLL-LIKE RECEPTORS IN VERTEBRATES;643
9.5.4;3. TLR-2;644
9.5.5;4. TLR-4;647
9.5.6;5. CONCLUSIONS;649
9.5.7;REFERENCES;651
9.6;Chapter 32. NOD receptor recognition of peptidoglycan;656
9.6.1;SUMMARY;656
9.6.2;1. BIOLOGICAL ACTIVITIES OF PEPTIDOGLYCAN: AN HISTORICAL PERSPECTIVE;656
9.6.3;2. THE NOD-LIKE PROTEINS: RECEPTORS OF THE INNATE IMMUNE SYSTEM;657
9.6.4;3. STRUCTURAL REQUIREMENTS OF PG FOR NOD PROTEINS DETECTION;660
9.6.5;4. THE ROLE OF NOD PROTEINS IN SENSING OF BACTERIAL INFECTIONS;662
9.6.6;5. PEPTIDOGLYCAN METABOLISM AND MODULATION OF NOD-DEPENDENT RESPONSES;664
9.6.7;6. CONCLUSIONS AND PERSPECTIVES;667
9.6.8;REFERENCES;668
9.7;Chapter 33. Microbial interaction with mucus and mucins;674
9.7.1;SUMMARY;674
9.7.2;1. INTRODUCTION;674
9.7.3;2. OVERALL EFFECT OF EPITHELIAL COLONIZATION ON MUCUS AND MUCINS;680
9.7.4;3. THE ROLE OF MICROBES IN THE NORMAL TURNOVER OF MUCUS GELS;681
9.7.5;4. MICROBIAL INTERACTIONS WITH MEMBRANE-ASSOCIATED MUCINS;681
9.7.6;5. MICROBIAL BINDING AND HOMING TO SECRETED MUCINS;682
9.7.7;6. MICROBIAL PENETRATION OF MUCUS GELS;684
9.7.8;7. MICROBIALLY MEDIATED RE-PROGRAMMING OF HOST GLYCOSYLATION;684
9.7.9;8. PATHOLOGIES OF MUCUS TURNOVER, ABNORMAL COLONIZATION, AND BIOFILM FORMATION;686
9.7.10;9. CONCLUSIONS;686
9.7.11;REFERENCES;688
9.8;Chapter 34. Mannose–fucose recognition by DC-SIGN;692
9.8.1;SUMMARY;692
9.8.2;1. INTRODUCTION;692
9.8.3;2. DC-SIGN STRUCTURE AND EXPRESSION;694
9.8.4;3. SELECTIVE RECOGNITION OF MAN- AND FUC-CONTAINING GLYCANS BY DC-SIGN;697
9.8.5;4. IN VIVO FUNCTION AND ROLE IN DENDRITIC CELL BIOLOGY OF DC-SIGN;701
9.8.6;5. PATHOGENS TARGET DC-SIGN TO SUBVERT HOST IMMUNE RESPONSES;704
9.8.7;6. CONCLUSIONS;708
9.8.8;REFERENCES;710
9.9;Chapter 35. Host surfactant proteins in microbial recognition;716
9.9.1;SUMMARY;716
9.9.2;1. INTRODUCTION – GENERAL OVERVIEW ON SURFACTANT PROTEINS;716
9.9.3;2. GENOMIC ORGANIZATION;718
9.9.4;3. MOLECULAR STRUCTURE;718
9.9.5;4. BIOSYNTHESIS AND TISSUE DISTRIBUTION OF SP-A AND SP-D;721
9.9.6;5. REGULATION OF GENE EXPRESSION;721
9.9.7;6. PUTATIVE RECEPTORS FOR SP-A AND SP-D;722
9.9.8;7. DIVERSE FUNCTIONS OF SP-A AND SP-D;724
9.9.9;8. CLINICAL APPLICATIONS AND SIGNIFICANCE;727
9.9.10;9. CONCLUSIONS;728
9.9.11;REFERENCES;728
9.10;Chapter 36. T-Cell recognition of microbial lipoglycans and glycolipids;734
9.10.1;SUMMARY;734
9.10.2;1. INTRODUCTION;734
9.10.3;2. STRUCTURE AND CELL BIOLOGY OF CD1 ANTIGEN-PRESENTING MOLECULES;735
9.10.4;3. STRUCTURE OF GLYCOLIPID ANTIGENS;738
9.10.5;4. PRESENTATION OF LIPID ANTIGENS;743
9.10.6;5. PRIMING, EXPANSION AND GENERATION OF MEMORY GLYCOLIPID-SPECIFIC T-CELLS;747
9.10.7;6. EFFECTOR FUNCTIONS OF GLYCOLIPID-SPECIFIC T-CELLS;747
9.10.8;7. CONCLUSIONS;747
9.10.9;REFERENCES;749
10;PART IV: BIOLOGICAL RELEVANCE OF MICROBIAL GLYCOSYLATED COMPONENTS;752
10.1;A. Environmental relevance;752
10.1.1;Chapter 37. Extracellular polymeric substances in microbial biofilms;754
10.1.1.1;SUMMARY;754
10.1.1.2;1. INTRODUCTION – BIOFILM SYSTEMS;754
10.1.1.3;2. EXTRACELLULAR POLYMERIC SUBSTANCES (EPS) IN BIOFILMS;755
10.1.1.4;3. NATURE AND APPEARANCE OF MICROBIAL EPS STRUCTURES;756
10.1.1.5;4. THE BIOFILM MATRIX AND ITS LITERATURE RE-EXAMINED;757
10.1.1.6;5. ISSUES CONCERNING EPS FUNCTION IN BIOFILM SYSTEMS;761
10.1.1.7;6. EPS FUNCTIONALITY – A NOVEL PERSPECTIVE;763
10.1.1.8;7. CONCLUSIONS;770
10.1.1.9;ACKNOWLEDGEMENTS;772
10.1.1.10;REFERENCES;772
10.1.2;Chapter 38. Physicochemical properties of microbial glycopolymers;778
10.1.2.1;SUMMARY;778
10.1.2.2;1. INTRODUCTION;778
10.1.2.3;2. LIPOPOLYSACCHARIDES;779
10.1.2.4;3. RHAMNOLIPIDS;786
10.1.2.5;4. MYCOBACTERIAL GLYCOPOLYMERS;791
10.1.2.6;5. FUTURE OUTLOOK;793
10.1.2.7;ACKNOWLEDGEMENTS;793
10.1.2.8;REFERENCES;794
10.1.3;Chapter 39. Microbial biofilm-related polysaccharides in biofouling and corrosion;800
10.1.3.1;SUMMARY;800
10.1.3.2;1. INTRODUCTION – BIOFILM SYSTEMS;800
10.1.3.3;2. BIOFILM-RELATED PSs IN BIOFOULING AND CORROSION;801
10.1.3.4;3. BIOFOULING CAUSING ENVIRONMENTAL AND INDUSTRIAL PROBLEMS;804
10.1.3.5;4. MICROBIALLY INFLUENCED CORROSION (MIC);811
10.1.3.6;5. CONCLUSIONS;814
10.1.3.7;ACKNOWLEDGEMENTS;816
10.1.3.8;REFERENCES;816
10.1.4;Chapter 40. Microbial glycosylated components in plant disease;822
10.1.4.1;SUMMARY;822
10.1.4.2;1. INTRODUCTION;822
10.1.4.3;2. INDUCED DEFENCE RESPONSES IN PLANTS;823
10.1.4.4;3. THE DIVERSE ROLES OF BACTERIAL LPSs IN PLANT DISEASE;824
10.1.4.5;4. BACTERIAL PG AS A M829
10.1.4.6;5. THE MULTIPLE ROLES OF EXOPOLYSACCHARIDES (EPSs);830
10.1.4.7;6. BACTERIAL CYCLIC GLUCAN AND SUPPRESSION OF HOST DEFENCES;833
10.1.4.8;7. FUNGAL CHITIN AND OOMYCETE GLUCAN AS MAMPs;834
10.1.4.9;8. CONCLUDING REMARKS;835
10.1.4.10;ACKNOWLEDGEMENTS;836
10.1.4.11;REFERENCES;837
10.2;B. Medical relevance;840
10.2.1;Chapter 41. Antigenic variation of microbial surface glycosylated molecules;842
10.2.1.1;SUMMARY;842
10.2.1.2;1. INTRODUCTION;842
10.2.1.3;2. PROTEIN-LINKED GLYCOSYLATION;843
10.2.1.4;3. LIPID-LINKED GLYCOSYLATION;846
10.2.1.5;4. CAPSULES;850
10.2.1.6;5. FUTURE PERSPECTIVES;851
10.2.1.7;REFERENCES;852
10.2.2;Chapter 42. Phase variation of bacterial surface glycosylated molecules in immune evasion;858
10.2.2.1;SUMMARY;858
10.2.2.2;1. INTRODUCTION;858
10.2.2.3;2. MOLECULAR MIMICRY OF HUMAN ANTIGENS BY THE LOSs OF PATHOGENIC NEISSERIA AND HAEMOPHILUS;859
10.2.2.4;3. THE LOS OF N. GONORRHOEAE MIMICS HUMAN PARAGLOBOSIDE AND SERVES AS A LIGAND TO THE ASIALOGLYCOPROTEIN RECEPTOR;861
10.2.2.5;4. THE LOS OF NTHi MIMICS THE HUMAN PLATELET-ACTIVATING FACTOR (PAF) AND CAN ACT AS A LIGAND FOR THE PLATELET-ACTIVATING FACTOR RECEPTOR (PAF-R) ON AIRWAY EPITHELIAL CELLS;863
10.2.2.6;5. CONCLUSIONS;865
10.2.2.7;REFERENCES;866
10.2.3;Chapter 43. Molecular mimicry of host glycosylated structures by bacteria;868
10.2.3.1;SUMMARY;868
10.2.3.2;1. INTRODUCTION;868
10.2.3.3;2. EXPRESSION OF GANGLIOSIDE MIMICRY BY C. JEJUNI;869
10.2.3.4;3. C. JEJUNI GANGLIOSIDE MIMICRY AND PATHOGENIC ANTI-GANGLIOSIDE ANTIBODIES;869
10.2.3.5;4. RELEVANCE OF MOLECULAR MICMICRY IN THE PATHOGENESIS OF GBS;873
10.2.3.6;5. EXPRESSION OF LE ANTIGENS IN H. PYLORI LPS;875
10.2.3.7;6. ROLES OF LPS-EXPRESSED LE ANTIGENS IN H. PYLORI PATHOGENESIS;878
10.2.3.8;7. CONCLUSIONS AND FUTURE OUTLOOK;884
10.2.3.9;ACKNOWLEDGEMENTS;885
10.2.3.10;REFERENCES;886
10.2.4;Chapter 44. Role of microbial glycosylation in host cell invasion;892
10.2.4.1;SUMMARY;892
10.2.4.2;1. INTRODUCTION;892
10.2.4.3;2. LPSs AND LOSs IN CELL INVASION;892
10.2.4.4;3. ROLE OF BACTERIAL CAPSULES IN INVASIVENESS;897
10.2.4.5;4. ROLE OF PROTEIN GLYCOSYLATION IN INVASION;899
10.2.4.6;5. CONCLUSIONS;900
10.2.4.7;ACKNOWLEDGEMENTS;901
10.2.4.8;REFERENCES;901
11;PART V: BIOTECHNOLOGICAL AND MEDICAL APPLICATIONS;906
11.1;Chapter 45. Exopolysaccharides produced by lactic acid bacteria in food and probiotic applications;908
11.1.1;SUMMARY;908
11.1.2;1. INTRODUCTION;908
11.1.3;2. THE EPSs FROM LAB;909
11.1.4;3. TECHNOLOGICAL APPLICATIONS OF EPS FROM LAB IN DAIRY PRODUCTS;913
11.1.5;4. HEALTH BENEFITS OF EPS FROM LAB AND BIFIDOBACTERIA FOR PROBIOTIC APPLICATIONS;915
11.1.6;5. CONCLUDING REMARKS AND FUTURE TRENDS;919
11.1.7;ACKNOWLEDGEMENTS;920
11.1.8;REFERENCES;920
11.2;Chapter 46. Industrial exploitation by genetic engineering of bacterial glycosylation systems;924
11.2.1;SUMMARY;924
11.2.2;1. INTRODUCTION;924
11.2.3;2. N-GLYCOSYLATION PATHWAY IN C. JEJUNI;925
11.2.4;3. PILIN O-GLYCOSYLATION IN P. AERUGINOSA;927
11.2.5;4. PILIN O-GLYCOSYLATION IN NEISSERIA SPP.;927
11.2.6;5. RECOMBINANT PROTEIN N- AND O-GLYCOSYLATION IN E. COLI;928
11.2.7;6. TOWARDS A NEW ERA IN GLYCO-ENGINEERING;929
11.2.8;7. CONCLUSIONS;933
11.2.9;ACKNOWLEDGEMENTS;934
11.2.10;REFERENCES;934
11.3;Chapter 47. Glycomimetics as inhibitors in anti-infection therapy;936
11.3.1;SUMMARY;936
11.3.2;1. INTRODUCTION;936
11.3.3;2. REPLACEMENT OF THE RING OXYGEN;937
11.3.4;3. REPLACEMENT OF THE GLYCOSIDIC OXYGEN;943
11.3.5;4. MIMICKING SPECIFIC FUNCTIONAL GROUPS WITHIN SUGARS – SIALYLMIMETICS;946
11.3.6;5. GLYCOMIMETICS IN CURRENT CLINICAL USE AS ANTI-INFECTIVES;948
11.3.7;6. CONCLUSIONS AND FUTURE DIRECTIONS;949
11.3.8;REFERENCES;950
11.4;Chapter 48. Bacterial polysaccharide vaccines: glycoconjugates and peptide-mimetics;954
11.4.1;SUMMARY;954
11.4.2;1. INTRODUCTION;954
11.4.3;2. CAPSULAR POLYSACCHARIDE–PROTEIN CONJUGATES;955
11.4.4;3. SYNTHETIC GLYCOCONJUGATE VACCINES;968
11.4.5;4. PEPTIDE-MIMETICS OF POLYSACCHARIDE EPITOPES;970
11.4.6;5. CONCLUSIONS;972
11.4.7;REFERENCES;973
11.5;Chapter 49. Immunomodulation by zwitterionic polysaccharides;978
11.5.1;SUMMARY;978
11.5.2;1. INTRODUCTION;978
11.5.3;2. IMMUNOMODULATION BY POLYSACCHARIDES;979
11.5.4;3. ZWITTERIONIC POLYSACCHARIDES (ZPSs);981
11.5.5;4. ACTIVATION OF T-CELLS BY ZPSs THROUGH INNATE AND ADAPTIVE IMMUNOMODULATION;984
11.5.6;5. BIOLOGICAL IMPACT OF ZPS-INDUCED T-CELL ACTIVATION;992
11.5.7;6. POTENTIAL FOR ZPSs AS THERAPEUTICS;995
11.5.8;7. CONCLUSIONS;997
11.5.9;REFERENCES;999
11.6;Chapter 50. Future potential of glycomics in microbiology and infectious diseases;1002
11.6.1;SUMMARY;1002
11.6.2;1. INTRODUCTION;1002
11.6.3;2. ADVANCES IN CARBOHYDRATE ANALYTICAL TECHNIQUES;1003
11.6.4;3. FUTURE OUTLOOK;1005
11.6.5;REFERENCES;1005
12;INDEX;1008
12.1;A;1008
12.2;B;1008
12.3;C;1008
12.4;D;1010
12.5;E;1010
12.6;F;1011
12.7;G;1011
12.8;H;1012
12.9;I;1013
12.10;K;1013
12.11;L;1013
12.12;M;1015
12.13;N;1016
12.14;O;1017
12.15;P;1017
12.16;R;1018
12.17;S;1018
12.18;T;1019
12.19;U;1020
12.20;V;1020
12.21;W;1021
12.22;X;1021
12.23;Y;1021
12.24;Z;1021
13;COLOUR PLATES;1022




