Moran / Holst / Brennan | Microbial Glycobiology | E-Book | www.sack.de
E-Book

E-Book, Englisch, 1036 Seiten

Moran / Holst / Brennan Microbial Glycobiology

Structures, Relevance and Applications
1. Auflage 2009
ISBN: 978-0-08-092324-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

Structures, Relevance and Applications

E-Book, Englisch, 1036 Seiten

ISBN: 978-0-08-092324-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



This book presents in an easy-to-read format a summary of the important central aspects of microbial glycobiology, i.e. the study of carbohydrates as related to the biology of microorganisms. Microbial glycobiology represents a multidisciplinary and emerging area with implications for a range of basic and applied research fields, as well as having industrial, medical and biotechnological implications.
Key Features and Benefits
* Individual chapters provided by leading international scientists in the field yield insightful, concise and stimulating reviews.
- Provides researchers with an overview and synthesis of the latest research
* Each chapter begins with a brief 200 word Summary/Abstract detailing the topic and focus of the chapter, as well as the concepts to be addressed.
- Allows researchers to see at a glance what each chapter will cover
* Each chapter includes a Research Focus Box
- Identifies important problems that still need to be solved and areas that require further investigation

Moran / Holst / Brennan Microbial Glycobiology jetzt bestellen!

Weitere Infos & Material


1;FRONT COVER;1
2;MICROBIAL GLYCOBIOLOGY: STRUCTURES, RELEVANCE AND APPLICATIONS;4
3;COPYRIGHT PAGE;5
4;CONTENTS;8
5;LIST OF CONTRIBUTORS;12
6;PREFACE;18
7;PART I: MICROBIAL GLYCOLIPIDS, GLYCOPROTEINS AND GLYCOPOLYMERS;20
7.1;Chapter 1. Overview of the glycosylated components of the bacterial cell envelope;22
7.1.1;SUMMARY;22
7.1.2;1. INTRODUCTION – THE BACTERIAL CELL ENVELOPE ENCOUNTERING ENVIRONMENTAL CHALLENGES;22
7.1.3;2. THE GRAM-NEGATIVE CELL ENVELOPE;23
7.1.4;3. THE GRAM-POSITIVE CELL ENVELOPE;27
7.1.5;4. THE MYCOBACTERIAL CELL ENVELOPE;29
7.1.6;5. THE ARCHAEAL CELL ENVELOPES AND S-LAYERS;31
7.1.7;6. CONCLUSIONS;31
7.1.8;ACKNOWLEDGEMENTS;31
7.1.9;REFERENCES;31
7.2;Chapter 2. Bacterial cell envelope peptidoglycan;34
7.2.1;SUMMARY;34
7.2.2;1. INTRODUCTION;34
7.2.3;2. STRUCTURAL VARIATION IN BACTERIAL PEPTIDOGLYCAN;35
7.2.4;3. BIOPHYSICAL PROPERTIES OF PEPTIDOGLYCAN;42
7.2.5;4. THE MOLECULAR ARCHITECTURE OF PEPTIDOGLYCAN;42
7.2.6;5. CONCLUSIONS;43
7.2.7;ACKNOWLEDGEMENTS;43
7.2.8;REFERENCES;43
7.3;Chapter 3. Core region and lipid A components of lipopolysaccharides;48
7.3.1;SUMMARY;48
7.3.2;1. INTRODUCTION;48
7.3.3;2. GENERAL STRUCTURAL FEATURES OF THE LIPID A MOLECULE;50
7.3.4;3. LIPOPOLYSACCHARIDES OF MAMMALIAN PATHOGENIC BACTERIA: THE CASE OF B. CEPACIA COMPLEX;53
7.3.5;4. PLANT PATHOGENIC AGROBACTERIUM AND XANTHOMONAS LPS AND THE ACTIVATION OF INNATE IMMUNE RESPONSE IN PLANTS;54
7.3.6;5. STRUCTURAL ELUCIDATION OF LIPID A;56
7.3.7;6. GENERAL STRUCTURAL FEATURES OF THE CORE REGION;56
7.3.8;7. CORE STRUCTURES OF VARIOUS BACTERIA;57
7.3.9;8. CONCLUSIONS;68
7.3.10;ACKNOWLEDGEMENTS;69
7.3.11;REFERENCES;69
7.4;Chapter 4. O-Specific polysaccharides of Gram-negative bacteria;76
7.4.1;SUMMARY;76
7.4.2;1. INTRODUCTION;76
7.4.3;2. COMPOSITION OF O-PSs;77
7.4.4;3. REPETITIVE O-PS STRUCTURES;81
7.4.5;4. NON-REPETITIVE MOTIFS;85
7.4.6;5. CONCLUSIONS;87
7.4.7;REFERENCES;88
7.5;Chapter 5. Teichoic acids, lipoteichoic acids and related cell wall glycopolymers of Gram-positive bacteria;94
7.5.1;SUMMARY;94
7.5.2;1. INTRODUCTION;94
7.5.3;2. TEICHOIC ACID STRUCTURES;95
7.5.4;3. BIOSYNTHESIS OF WTAs AND LTA;98
7.5.5;4. ROLES OF WTAs AND LTA IN BACTERIAL PHYSIOLOGY;102
7.5.6;5. TEICHOIC ACIDS AND HOST CELL RECEPTOR INTERACTION;103
7.5.7;6. CONCLUSIONS AND PERSPECTIVES;105
7.5.8;ACKNOWLEDGEMENTS;106
7.5.9;REFERENCES;106
7.6;Chapter 6. Bacterial capsular polysaccharides and exopolysaccharides;112
7.6.1;SUMMARY;112
7.6.2;1. INTRODUCTION;112
7.6.3;2. CARBOHYDRATE COMPONENTS OF CAPSULAR AND EXO-POLYSACCHARIDES;113
7.6.4;3. NON-CARBOHYDRATE SUBSTITUENTS OF CAPSULAR AND EXOPOLYSACCHARIDES;114
7.6.5;4. STRUCTURE OVERVIEW OF BACTERIAL POLYSACCHARIDES;114
7.6.6;5. POLYSACCHARIDE SHAPES;119
7.6.7;6. BIOLOGICAL FUNCTIONS OF CAPSULAR AND EXOPOLYSACCHARIDES;120
7.6.8;7. EXOPOLYSACCHARIDES OF THE BURKHOLDERIA CEPACIA COMPLEX: A CASE STUDY;122
7.6.9;8. CONCLUSION;124
7.6.10;ACKNOWLEDGEMENTS;125
7.6.11;REFERENCES;125
7.7;Chapter 7. Bacterial surface layer glycoproteins and "non-classical" secondary cell wall polymers;128
7.7.1;SUMMARY;128
7.7.2;1. INTRODUCTION;129
7.7.3;2. BACTERIAL AND ARCHAEAL S-LAYERS;129
7.7.4;3. GENERAL FEATURES OF GLYCOSYLATED S-LAYER PROTEINS;130
7.7.5;4. GENETICS;133
7.7.6;5. BIOSYNTHESIS;134
7.7.7;6. THE "NON-CLASSICAL" GROUP OF SECONDARY CELL WALL POLYMERS;138
7.7.8;7. OUTLOOK;143
7.7.9;ACKNOWLEDGEMENTS;144
7.7.10;REFERENCES;144
7.8;Chapter 8. Glycosylation of bacterial and archaeal flagellins;148
7.8.1;SUMMARY;148
7.8.2;1. INTRODUCTION;148
7.8.3;2. FLAGELLAR GLYCAN STRUCTURES;150
7.8.4;3. STRUCTURAL ANALYSIS OF FLAGELLAR GLYCANS;155
7.8.5;4. FLAGELLAR GLYCAN BIOSYNTHETIC PATHWAYS;156
7.8.6;5. CONCLUSIONS AND FUTURE PERSPECTIVES;159
7.8.7;ACKNOWLEDGEMENTS;162
7.8.8;REFERENCES;162
7.9;Chapter 9. Glycosylated components of the mycobacterial cell wall: structure and function;166
7.9.1;SUMMARY;166
7.9.2;1. CHARACTERISTIC FEATURES OF MYCOBACTERIUM SPP.;166
7.9.3;2. THE MYCOBACTERIAL ENVELOPE;167
7.9.4;3. THE MYCOBACTERIAL CELL WALL SKELETON: THE MYCOLYLARABINOGALACTAN-PG COMPLEX;168
7.9.5;4. THE SOLUBLE CROSS-SPECIES GLYCOCONJUGATES OF THE MYCOBACTERIAL CELL WALL;170
7.9.6;5. THE SPECIES AND SUB-SPECIES SPECIFIC SOLUBLE GLYCOCONJUGATES OF MYCOBACTERIAL CELL WALLS;177
7.9.7;6. CONCLUSIONS;181
7.9.8;ACKNOWLEDGEMENTS;181
7.9.9;REFERENCES;181
7.10;Chapter 10. Glycoconjugate structure and function in fungal cell walls;188
7.10.1;SUMMARY;188
7.10.2;1. INTRODUCTION;188
7.10.3;2. OVERALL STRUCTURE;189
7.10.4;3. WALL POLYSACCHARIDES;189
7.10.5;4. CELL WALL GLYCOPROTEINS OF ASCOMYCETOUS FUNGI;191
7.10.6;5. CHARACTERISTICS OF FUNGAL CELL WALL GLYCOPROTEINS;193
7.10.7;6. THE MANNOPROTEIN GLYCANS;195
7.10.8;7. FUNCTIONS OF WALL GLYCOPROTEINS;198
7.10.9;8. DYNAMICS OF THE FUNGAL WALL PROTEOME;199
7.10.10;9. CONCLUSIONS;200
7.10.11;ACKNOWLEDGEMENTS;201
7.10.12;REFERENCES;201
7.11;Chapter 11. Cytoplasmic carbohydrate molecules: trehalose and glycogen;204
7.11.1;SUMMARY;204
7.11.2;1. INTRODUCTION;204
7.11.3;2. OCCURRENCE, DISTRIBUTION AND FUNCTION OF GLYCOGEN;205
7.11.4;3. STRUCTURE OF GLYCOGEN;206
7.11.5;4. BIOSYNTHESIS OF GLYCOGEN;206
7.11.6;5. DEGRADATION OF GLYCOGEN;209
7.11.7;6. OCCURRENCE AND DISTRIBUTION OF TREHALOSE;210
7.11.8;7. BIOSYNTHESIS OF TREHALOSE;211
7.11.9;8. FUNCTIONS OF TREHALOSE;215
7.11.10;9. CONCLUSIONS;216
7.11.11;REFERENCES;218
7.12;Chapter 12. Glycosylated compounds of parasitic protozoa;222
7.12.1;SUMMARY;222
7.12.2;1. INTRODUCTION;222
7.12.3;2. THE SURFACE COATS OF PARASITIC PROTOZOA – AN OVERVIEW;224
7.12.4;3. PROTEIN-LINKED AND FREE GPI GLYCOLIPIDS;225
7.12.5;4. N-LINKED GLYCANS;232
7.12.6;5. O-LINKED GLYCANS;236
7.12.7;6. PHOSPHOGLYCOSYLATION;238
7.12.8;7. PARASITE CYST WALL POLYSACCHARIDES;241
7.12.9;8. INTRACELLULAR RESERVE GLYCANS;242
7.12.10;9. CONCLUSIONS;242
7.12.11;ACKNOWLEDGEMENTS;244
7.12.12;REFERENCES;244
7.13;Chapter 13. Analytical approaches towards the structural characterization of microbial wall glycopolymers;252
7.13.1;SUMMARY;252
7.13.2;1. INTRODUCTION;252
7.13.3;2. ISOLATION AND PURIFICATION OF BACTERIAL GLYCAN STRUCTURES;253
7.13.4;3. NMR TECHNIQUES EMPLOYED FOR STRUCTURAL CHARACTERIZATION OF GLYCANS;254
7.13.5;4. MASS SPECTROMETRY OF GLYCANS;261
7.13.6;5. CONCLUSIONS;267
7.13.7;REFERENCES;268
7.14;Chapter 14. Single-molecule characterization of microbial polysaccharides;272
7.14.1;SUMMARY;272
7.14.2;1. INTRODUCTION;272
7.14.3;2. ATOMIC FORCE MICROSCOPY AND ITS APPLICATION TO MICROBIAL PSs;273
7.14.4;3. MEASUREMENTS OF MECHANICAL PROPERTIES OF SINGLE PSs;274
7.14.5;4. ATOMIC FORCE MICROSCOPY AS A TOOL TO INVESTIGATE FUNCTION OF MICROBIAL PSs;278
7.14.6;5. SINGLE-MOLECULE STUDIES OF MICROBIAL PSs USING OPTICAL TECHNIQUES;283
7.14.7;6. CONCLUSIONS;284
7.14.8;ACKNOWLEDGEMENTS;285
7.14.9;REFERENCES;285
7.15;Chapter 15. Viral surface glycoproteins in carbohydrate recognition: structure and modelling;288
7.15.1;SUMMARY;288
7.15.2;1. INTRODUCTION;288
7.15.3;2. INFLUENZA VIRUS;289
7.15.4;3. PARAINFLUENZA;293
7.15.5;4. DENGUE VIRUS;294
7.15.6;5. ROTAVIRUS;296
7.15.7;6. CONCLUSIONS;298
7.15.8;REFERENCES;298
8;PART II: SYNTHESIS OF MICROBIAL GLYCOSYLATED COMPONENTS;304
8.1;A. Biosynthesis and biosynthetic processes;304
8.1.1;Chapter 16. Biosynthesis of bacterial peptidoglycan;306
8.1.1.1;SUMMARY;306
8.1.1.2;1. INTRODUCTION;306
8.1.1.3;2. ASSEMBLY OF THE MONOMER UNIT;307
8.1.1.4;3. TRANSLOCATION OF THE MONOMER UNIT;315
8.1.1.5;4. POLYMERIZATION OF THE MONOMER UNIT;316
8.1.1.6;5. VARIATIONS IN PEPTIDOGLYCAN BIOSYNTHESIS;318
8.1.1.7;6. IN VIVO FUNCTIONING OF THE MONOMER UNIT ASSEMBLY;318
8.1.1.8;7. IN VIVO FUNCTIONING OF THE POLYMERIZATION PROCESS;319
8.1.1.9;8. INHIBITION OF PEPTIDOGLYCAN BIOSYNTHESIS;320
8.1.1.10;9. CONCLUDING REMARKS;320
8.1.1.11;ACKNOWLEDGEMENTS;320
8.1.1.12;REFERENCES;321
8.1.2;Chapter 17. Biosynthesis and membrane assembly of lipid A;324
8.1.2.1;SUMMARY;324
8.1.2.2;1. INTRODUCTION;324
8.1.2.3;2. THE CONSTITUTIVE LIPID A BIOSYNTHETIC PATHWAY;325
8.1.2.4;3. TRANSPORT;328
8.1.2.5;4. MODIFICATION OF THE Kdo-LIPID A DOMAIN OF LPS;328
8.1.2.6;5. CONCLUSIONS;333
8.1.2.7;ACKNOWLEDGEMENTS;334
8.1.2.8;REFERENCES;334
8.1.3;Chapter 18. Biosynthesis of O-antigen chains and assembly;338
8.1.3.1;SUMMARY;338
8.1.3.2;1. INTRODUCTION;338
8.1.3.3;2. THE E. COLI K-12 (O16) O-ANTIGEN;339
8.1.3.4;3. S. ENTERICA LT2 AND A FAMILY OF O-ANTIGENS;341
8.1.3.5;4. INITIAL TRANSFERASES THAT INITIATE O-ANTIGEN SYNTHESIS;341
8.1.3.6;5. OVERVIEW OF THE WZX/WZY PATHWAY;343
8.1.3.7;6. THE ABC TRANSPORTER PATHWAY;349
8.1.3.8;7. THE SYNTHASE PATHWAY;350
8.1.3.9;8. CONCLUSIONS;350
8.1.3.10;REFERENCES;352
8.1.4;Chapter 19. Biosynthesis of cell wall teichoic acid polymers;356
8.1.4.1;SUMMARY;356
8.1.4.2;1. INTRODUCTION;356
8.1.4.3;2. MODEL OF TEICHOIC ACID BIOSYNTHESIS;358
8.1.4.4;3. BIOSYNTHESIS OF WTA PRECURSORS;358
8.1.4.5;4. STUDYING MEMBRANE ACTIVITIES;361
8.1.4.6;5. LINKAGE UNIT GLYCOSYLTRANSFERASES;362
8.1.4.7;6. TEICHOIC ACID POLYMER BIOSYNTHESIS;363
8.1.4.8;7. OUTSTANDING ISSUES;366
8.1.4.9;8. CONCLUSIONS;366
8.1.4.10;ACKNOWLEDGEMENTS;367
8.1.4.11;REFERENCES;367
8.1.5;Chapter 20. Biosynthesis and assembly of capsular polysaccharides;370
8.1.5.1;SUMMARY;370
8.1.5.2;1. INTRODUCTION;370
8.1.5.3;2. BIOSYNTHESIS AND TRANSPORT OF CPSs ACROSS THE INNER MEMBRANE;371
8.1.5.4;3. CAPSULAR POLYSACCHARIDE EXPORT ACROSS THE OUTER MEMBRANE;380
8.1.5.5;4. BRIDGING THE GAP BETWEEN THE INNER AND OUTER MEMBRANES;382
8.1.5.6;5. CELL-SURFACE ATTACHMENT OF THE CPS;384
8.1.5.7;6. CONCLUSIONS;384
8.1.5.8;ACKNOWLEDGEMENTS;385
8.1.5.9;REFERENCES;385
8.1.6;Chapter 21. Biosynthesis of the mycobacterial cell envelope components;394
8.1.6.1;SUMMARY;394
8.1.6.2;1. MYCOBACTERIAL GLYCOSYLTRANSFERASES;394
8.1.6.3;2. BIOCHEMISTRY AND GENETICS OF PEPTIDOGLYCAN (PG) SYNTHESIS;396
8.1.6.4;3. BIOCHEMISTRY AND GENETICS OF AG SYNTHESIS;397
8.1.6.5;4. BIOSYNTHESIS AND GENETICS OF THE PHOSPHATIDYLINOSITOL-(PI-) CONTAINING PHOSPHATIDYLINOSITOL-MANNOSIDES (PIMS), LMs AND LAMs;400
8.1.6.6;5. BIOSYNTHESIS AND GENETICS OF THE GLYCOPEPTIDOLIPIDS;402
8.1.6.7;6. BIOSYNTHESIS AND GENETICS OF THE PHTHIOCEROL-CONTAINING LIPIDS;403
8.1.6.8;7. BIOSYNTHESIS OF THE TREHALOSE-CONTAINING GLYCOLIPIDS;406
8.1.6.9;8. CONCLUSIONS;406
8.1.6.10;ACKNOWLEDGEMENTS;407
8.1.6.11;REFERENCES;407
8.1.7;Chapter 22. Biosynthesis of fungal and yeast glycans;412
8.1.7.1;SUMMARY;412
8.1.7.2;1. INTRODUCTION;412
8.1.7.3;2. PRECURSORS FOR GLYCAN SYNTHESIS;413
8.1.7.4;3. FUNGAL PROTEIN GLYCOSYLATION;414
8.1.7.5;4. FUNGAL GLYCOLIPIDS;421
8.1.7.6;5. FUNGAL CELL WALL POLYMERS;423
8.1.7.7;6. INTRACELLULAR GLYCANS;426
8.1.7.8;7. EXOPOLYSACCHARIDES;426
8.1.7.9;8. CONCLUSIONS;427
8.1.7.10;ACKNOWLEDGEMENTS;428
8.1.7.11;REFERENCES;428
8.2;B. Chemical synthesis;432
8.2.1;Chapter 23. Chemical synthesis of bacterial lipid A;434
8.2.1.1;SUMMARY;434
8.2.1.2;1. INTRODUCTION;434
8.2.1.3;2. EARLY CHEMICAL SYNTHESES OF BACTERIAL LIPID A;435
8.2.1.4;3. IMPROVED SYNTHESIS OF LIPID A ANALOGUES;437
8.2.1.5;4. SYNTHESIS OF LIPID A CONTAINING AN UNSATURATED FATTY ACYL GROUP;442
8.2.1.6;5. CONCLUDING REMARKS;443
8.2.1.7;REFERENCES;445
8.2.2;Chapter 24. Chemical synthesis of the core oligosaccharide of bacterial lipopolysaccharide;448
8.2.2.1;SUMMARY;448
8.2.2.2;1. INTRODUCTION;448
8.2.2.3;2. SYNTHESIS OF 3-DEOXY-D-MANNO-OCT-2-ULOSONIC ACID (Kdo)- AND D-GLYCERO-D-TALO-OCT-2-ULOSONIC ACID (Ko)- CONTAINING CORE STRUCTURES;449
8.2.2.4;3. SYNTHESIS OF HEPTOSE-CONTAINING CORE STRUCTURES;457
8.2.2.5;4. SYNTHESIS OF PHOSPHORYLATED CORE UNITS;466
8.2.2.6;5. SYNTHESIS OF OUTER CORE UNITS;468
8.2.2.7;6. CONCLUDING REMARKS;469
8.2.2.8;ACKNOWLEDGEMENTS;471
8.2.2.9;REFERENCES;471
8.2.3;Chapter 25. Chemical synthesis of lipoteichoic acid and derivatives;474
8.2.3.1;SUMMARY;474
8.2.3.2;1. INTRODUCTION;474
8.2.3.3;2. VAN BOOM'S SYNTHESIS OF S. AUREUS LTA TYPE I;475
8.2.3.4;3. KUSUMOTO'S SYNTHESIS OF LTA FRAGMENTS FROM ENTEROCOCCUS HIRAE AND STREPTOCOCCUS PYOGENES;480
8.2.3.5;4. SCHMIDT'S SYNTHESIS OF LTA TYPE I FROM S. AUREUS;488
8.2.3.6;5. CONCLUSION;492
8.2.3.7;REFERENCES;494
8.2.4;Chapter 26. Chemical synthesis of parasitic glycoconjugates and phosphoglycans;496
8.2.4.1;SUMMARY;496
8.2.4.2;1. INTRODUCTION;496
8.2.4.3;2. CHEMICAL SYNTHESIS OF PARASITIC GLYCOCONJUGATES (GPI ANCHORS);498
8.2.4.4;3. CHEMICAL SYNTHESIS OF PARASITIC PHOSPHOGLYCANS OF LEISHMANIA;550
8.2.4.5;4. CONCLUSIONS AND FUTURE PERSPECTIVES;560
8.2.4.6;REFERENCES;564
9;PART III: MICROBE–HOST GLYCOSYLATED INTERACTIONS;568
9.1;Chapter 27. Bacterial lectin-like interactions in cell recognition and adhesion;570
9.1.1;SUMMARY;570
9.1.2;1. INTRODUCTION;570
9.1.3;2. MANNOSE-SPECIFIC BACTERIAL LECTINS;574
9.1.4;3. FUCOSE-SPECIFIC BACTERIAL LECTINS;574
9.1.5;4. GALACTOSE AND GalNAc-SPECIFIC BACTERIAL LECTINS;575
9.1.6;5. N-ACETYLGLUCOSAMINE-SPECIFIC BACTERIAL LECTINS;575
9.1.7;6. TISSUE TROPISM OF UPEC;576
9.1.8;7. UTILIZING GLYCAN ARRAY TECHNOLOGY TO IDENTIFY AND CHARACTERIZE NOVEL BACTERIA–CARBOHYDRATE INTERACTIONS;578
9.1.9;8. INHIBITORS OF LECTIN-MEDIATED ADHESION OF BACTERIA TO HOST CELLS;579
9.1.10;9. CONCLUSIONS;581
9.1.11;ACKNOWLEDGEMENTS;581
9.1.12;REFERENCES;581
9.2;Chapter 28. Lectin-like interactions in virus–cell recognition: human immunodeficiency virus and C-type lectin interactions;586
9.2.1;SUMMARY;586
9.2.2;1. INTRODUCTION;586
9.2.3;2. MAKING IT STICK: Env MEDIATES HIV ATTACHMENT AND ENTRY INTO HOST CELLS;588
9.2.4;3. PROMOTION OF HIV CAPTURE, TRANS-INFECTION AND DISSEMINATION BY DC-SIGN – THE PARADIGM REVISITED;589
9.2.5;4. BINDING OF HIV TO DC-SIGN ON B-CELLS AND PLATELETS – MODULATION OF IMMUNE RESPONSES AND TRANS-INFECTION OF T-CELLS;594
9.2.6;5. IMPACT OF DC-SIGN POLYMORPHISMS ON THE SUSCEPTIBILITY TO HIV INFECTION;595
9.2.7;6. LANGERIN ON LANGERHANS CELLS – BARRIER AGAINST HIV TRANSMISSION?;596
9.2.8;7. DC-SIGNR AND LSECtin – CONSEQUENCES OF HIV CAPTURE BY VASCULAR ENDOTHELIAL CELLS;596
9.2.9;8. CONCLUSIONS;597
9.2.10;ACKNOWLEDGEMENTS;598
9.2.11;REFERENCES;598
9.3;Chapter 29. Sialic acid-specific microbial lectins;604
9.3.1;SUMMARY;604
9.3.2;1. INTRODUCTION;604
9.3.3;2. ROLE OF SIALIC ACID-SPECIFIC MICROBIAL LECTINS IN HOST CELL ATTACHMENT;605
9.3.4;3. CONSERVED BINDING SITE OF SIALIC ACID-SPECIFIC MICROBIAL LECTINS;610
9.3.5;4. SIALIC ACID-BINDING DOMAIN ASSOCIATED WITH BACTERIAL SIALIC ACID TRANSPORT SYSTEMS;612
9.3.6;5. CONCLUSIONS;614
9.3.7;REFERENCES;614
9.4;Chapter 30. Bacterial toxins and their carbohydrate receptors at the host–pathogen interface;618
9.4.1;SUMMARY;618
9.4.2;1. INTRODUCTION;618
9.4.3;2. TOXIN RECEPTOR GSL-BINDING;620
9.4.4;3. INTRACELLULAR TRAFFICKING OF GSLs;624
9.4.5;4. INTRACELLULAR TOXIN TRAFFIC;625
9.4.6;5. GLYCOSPHINGOLIPID RECEPTORS AND TOXIN-INDUCED PATHOLOGY;628
9.4.7;6. TOXIN-GSL-MEDIATED SIGNALLING;629
9.4.8;7. Gb[sub(3)] AND DRUG RESISTANCE;630
9.4.9;8. VEROTOXIN1 AS AN ANTI-NEOPLASTIC;631
9.4.10;9. VEROTOXIN OPENS A WINDOW FOR HUMAN IMMUNODEFICIENCY VIRUS (HIV) THERAPY;632
9.4.11;10. CONCLUSIONS;633
9.4.12;REFERENCES;633
9.5;Chapter 31. Toll-like receptor recognition of lipoglycans, glycolipids and lipopeptides;642
9.5.1;SUMMARY;642
9.5.2;1. INTRODUCTION;642
9.5.3;2. TOLL-LIKE RECEPTORS IN VERTEBRATES;643
9.5.4;3. TLR-2;644
9.5.5;4. TLR-4;647
9.5.6;5. CONCLUSIONS;649
9.5.7;REFERENCES;651
9.6;Chapter 32. NOD receptor recognition of peptidoglycan;656
9.6.1;SUMMARY;656
9.6.2;1. BIOLOGICAL ACTIVITIES OF PEPTIDOGLYCAN: AN HISTORICAL PERSPECTIVE;656
9.6.3;2. THE NOD-LIKE PROTEINS: RECEPTORS OF THE INNATE IMMUNE SYSTEM;657
9.6.4;3. STRUCTURAL REQUIREMENTS OF PG FOR NOD PROTEINS DETECTION;660
9.6.5;4. THE ROLE OF NOD PROTEINS IN SENSING OF BACTERIAL INFECTIONS;662
9.6.6;5. PEPTIDOGLYCAN METABOLISM AND MODULATION OF NOD-DEPENDENT RESPONSES;664
9.6.7;6. CONCLUSIONS AND PERSPECTIVES;667
9.6.8;REFERENCES;668
9.7;Chapter 33. Microbial interaction with mucus and mucins;674
9.7.1;SUMMARY;674
9.7.2;1. INTRODUCTION;674
9.7.3;2. OVERALL EFFECT OF EPITHELIAL COLONIZATION ON MUCUS AND MUCINS;680
9.7.4;3. THE ROLE OF MICROBES IN THE NORMAL TURNOVER OF MUCUS GELS;681
9.7.5;4. MICROBIAL INTERACTIONS WITH MEMBRANE-ASSOCIATED MUCINS;681
9.7.6;5. MICROBIAL BINDING AND HOMING TO SECRETED MUCINS;682
9.7.7;6. MICROBIAL PENETRATION OF MUCUS GELS;684
9.7.8;7. MICROBIALLY MEDIATED RE-PROGRAMMING OF HOST GLYCOSYLATION;684
9.7.9;8. PATHOLOGIES OF MUCUS TURNOVER, ABNORMAL COLONIZATION, AND BIOFILM FORMATION;686
9.7.10;9. CONCLUSIONS;686
9.7.11;REFERENCES;688
9.8;Chapter 34. Mannose–fucose recognition by DC-SIGN;692
9.8.1;SUMMARY;692
9.8.2;1. INTRODUCTION;692
9.8.3;2. DC-SIGN STRUCTURE AND EXPRESSION;694
9.8.4;3. SELECTIVE RECOGNITION OF MAN- AND FUC-CONTAINING GLYCANS BY DC-SIGN;697
9.8.5;4. IN VIVO FUNCTION AND ROLE IN DENDRITIC CELL BIOLOGY OF DC-SIGN;701
9.8.6;5. PATHOGENS TARGET DC-SIGN TO SUBVERT HOST IMMUNE RESPONSES;704
9.8.7;6. CONCLUSIONS;708
9.8.8;REFERENCES;710
9.9;Chapter 35. Host surfactant proteins in microbial recognition;716
9.9.1;SUMMARY;716
9.9.2;1. INTRODUCTION – GENERAL OVERVIEW ON SURFACTANT PROTEINS;716
9.9.3;2. GENOMIC ORGANIZATION;718
9.9.4;3. MOLECULAR STRUCTURE;718
9.9.5;4. BIOSYNTHESIS AND TISSUE DISTRIBUTION OF SP-A AND SP-D;721
9.9.6;5. REGULATION OF GENE EXPRESSION;721
9.9.7;6. PUTATIVE RECEPTORS FOR SP-A AND SP-D;722
9.9.8;7. DIVERSE FUNCTIONS OF SP-A AND SP-D;724
9.9.9;8. CLINICAL APPLICATIONS AND SIGNIFICANCE;727
9.9.10;9. CONCLUSIONS;728
9.9.11;REFERENCES;728
9.10;Chapter 36. T-Cell recognition of microbial lipoglycans and glycolipids;734
9.10.1;SUMMARY;734
9.10.2;1. INTRODUCTION;734
9.10.3;2. STRUCTURE AND CELL BIOLOGY OF CD1 ANTIGEN-PRESENTING MOLECULES;735
9.10.4;3. STRUCTURE OF GLYCOLIPID ANTIGENS;738
9.10.5;4. PRESENTATION OF LIPID ANTIGENS;743
9.10.6;5. PRIMING, EXPANSION AND GENERATION OF MEMORY GLYCOLIPID-SPECIFIC T-CELLS;747
9.10.7;6. EFFECTOR FUNCTIONS OF GLYCOLIPID-SPECIFIC T-CELLS;747
9.10.8;7. CONCLUSIONS;747
9.10.9;REFERENCES;749
10;PART IV: BIOLOGICAL RELEVANCE OF MICROBIAL GLYCOSYLATED COMPONENTS;752
10.1;A. Environmental relevance;752
10.1.1;Chapter 37. Extracellular polymeric substances in microbial biofilms;754
10.1.1.1;SUMMARY;754
10.1.1.2;1. INTRODUCTION – BIOFILM SYSTEMS;754
10.1.1.3;2. EXTRACELLULAR POLYMERIC SUBSTANCES (EPS) IN BIOFILMS;755
10.1.1.4;3. NATURE AND APPEARANCE OF MICROBIAL EPS STRUCTURES;756
10.1.1.5;4. THE BIOFILM MATRIX AND ITS LITERATURE RE-EXAMINED;757
10.1.1.6;5. ISSUES CONCERNING EPS FUNCTION IN BIOFILM SYSTEMS;761
10.1.1.7;6. EPS FUNCTIONALITY – A NOVEL PERSPECTIVE;763
10.1.1.8;7. CONCLUSIONS;770
10.1.1.9;ACKNOWLEDGEMENTS;772
10.1.1.10;REFERENCES;772
10.1.2;Chapter 38. Physicochemical properties of microbial glycopolymers;778
10.1.2.1;SUMMARY;778
10.1.2.2;1. INTRODUCTION;778
10.1.2.3;2. LIPOPOLYSACCHARIDES;779
10.1.2.4;3. RHAMNOLIPIDS;786
10.1.2.5;4. MYCOBACTERIAL GLYCOPOLYMERS;791
10.1.2.6;5. FUTURE OUTLOOK;793
10.1.2.7;ACKNOWLEDGEMENTS;793
10.1.2.8;REFERENCES;794
10.1.3;Chapter 39. Microbial biofilm-related polysaccharides in biofouling and corrosion;800
10.1.3.1;SUMMARY;800
10.1.3.2;1. INTRODUCTION – BIOFILM SYSTEMS;800
10.1.3.3;2. BIOFILM-RELATED PSs IN BIOFOULING AND CORROSION;801
10.1.3.4;3. BIOFOULING CAUSING ENVIRONMENTAL AND INDUSTRIAL PROBLEMS;804
10.1.3.5;4. MICROBIALLY INFLUENCED CORROSION (MIC);811
10.1.3.6;5. CONCLUSIONS;814
10.1.3.7;ACKNOWLEDGEMENTS;816
10.1.3.8;REFERENCES;816
10.1.4;Chapter 40. Microbial glycosylated components in plant disease;822
10.1.4.1;SUMMARY;822
10.1.4.2;1. INTRODUCTION;822
10.1.4.3;2. INDUCED DEFENCE RESPONSES IN PLANTS;823
10.1.4.4;3. THE DIVERSE ROLES OF BACTERIAL LPSs IN PLANT DISEASE;824
10.1.4.5;4. BACTERIAL PG AS A M829
10.1.4.6;5. THE MULTIPLE ROLES OF EXOPOLYSACCHARIDES (EPSs);830
10.1.4.7;6. BACTERIAL CYCLIC GLUCAN AND SUPPRESSION OF HOST DEFENCES;833
10.1.4.8;7. FUNGAL CHITIN AND OOMYCETE GLUCAN AS MAMPs;834
10.1.4.9;8. CONCLUDING REMARKS;835
10.1.4.10;ACKNOWLEDGEMENTS;836
10.1.4.11;REFERENCES;837
10.2;B. Medical relevance;840
10.2.1;Chapter 41. Antigenic variation of microbial surface glycosylated molecules;842
10.2.1.1;SUMMARY;842
10.2.1.2;1. INTRODUCTION;842
10.2.1.3;2. PROTEIN-LINKED GLYCOSYLATION;843
10.2.1.4;3. LIPID-LINKED GLYCOSYLATION;846
10.2.1.5;4. CAPSULES;850
10.2.1.6;5. FUTURE PERSPECTIVES;851
10.2.1.7;REFERENCES;852
10.2.2;Chapter 42. Phase variation of bacterial surface glycosylated molecules in immune evasion;858
10.2.2.1;SUMMARY;858
10.2.2.2;1. INTRODUCTION;858
10.2.2.3;2. MOLECULAR MIMICRY OF HUMAN ANTIGENS BY THE LOSs OF PATHOGENIC NEISSERIA AND HAEMOPHILUS;859
10.2.2.4;3. THE LOS OF N. GONORRHOEAE MIMICS HUMAN PARAGLOBOSIDE AND SERVES AS A LIGAND TO THE ASIALOGLYCOPROTEIN RECEPTOR;861
10.2.2.5;4. THE LOS OF NTHi MIMICS THE HUMAN PLATELET-ACTIVATING FACTOR (PAF) AND CAN ACT AS A LIGAND FOR THE PLATELET-ACTIVATING FACTOR RECEPTOR (PAF-R) ON AIRWAY EPITHELIAL CELLS;863
10.2.2.6;5. CONCLUSIONS;865
10.2.2.7;REFERENCES;866
10.2.3;Chapter 43. Molecular mimicry of host glycosylated structures by bacteria;868
10.2.3.1;SUMMARY;868
10.2.3.2;1. INTRODUCTION;868
10.2.3.3;2. EXPRESSION OF GANGLIOSIDE MIMICRY BY C. JEJUNI;869
10.2.3.4;3. C. JEJUNI GANGLIOSIDE MIMICRY AND PATHOGENIC ANTI-GANGLIOSIDE ANTIBODIES;869
10.2.3.5;4. RELEVANCE OF MOLECULAR MICMICRY IN THE PATHOGENESIS OF GBS;873
10.2.3.6;5. EXPRESSION OF LE ANTIGENS IN H. PYLORI LPS;875
10.2.3.7;6. ROLES OF LPS-EXPRESSED LE ANTIGENS IN H. PYLORI PATHOGENESIS;878
10.2.3.8;7. CONCLUSIONS AND FUTURE OUTLOOK;884
10.2.3.9;ACKNOWLEDGEMENTS;885
10.2.3.10;REFERENCES;886
10.2.4;Chapter 44. Role of microbial glycosylation in host cell invasion;892
10.2.4.1;SUMMARY;892
10.2.4.2;1. INTRODUCTION;892
10.2.4.3;2. LPSs AND LOSs IN CELL INVASION;892
10.2.4.4;3. ROLE OF BACTERIAL CAPSULES IN INVASIVENESS;897
10.2.4.5;4. ROLE OF PROTEIN GLYCOSYLATION IN INVASION;899
10.2.4.6;5. CONCLUSIONS;900
10.2.4.7;ACKNOWLEDGEMENTS;901
10.2.4.8;REFERENCES;901
11;PART V: BIOTECHNOLOGICAL AND MEDICAL APPLICATIONS;906
11.1;Chapter 45. Exopolysaccharides produced by lactic acid bacteria in food and probiotic applications;908
11.1.1;SUMMARY;908
11.1.2;1. INTRODUCTION;908
11.1.3;2. THE EPSs FROM LAB;909
11.1.4;3. TECHNOLOGICAL APPLICATIONS OF EPS FROM LAB IN DAIRY PRODUCTS;913
11.1.5;4. HEALTH BENEFITS OF EPS FROM LAB AND BIFIDOBACTERIA FOR PROBIOTIC APPLICATIONS;915
11.1.6;5. CONCLUDING REMARKS AND FUTURE TRENDS;919
11.1.7;ACKNOWLEDGEMENTS;920
11.1.8;REFERENCES;920
11.2;Chapter 46. Industrial exploitation by genetic engineering of bacterial glycosylation systems;924
11.2.1;SUMMARY;924
11.2.2;1. INTRODUCTION;924
11.2.3;2. N-GLYCOSYLATION PATHWAY IN C. JEJUNI;925
11.2.4;3. PILIN O-GLYCOSYLATION IN P. AERUGINOSA;927
11.2.5;4. PILIN O-GLYCOSYLATION IN NEISSERIA SPP.;927
11.2.6;5. RECOMBINANT PROTEIN N- AND O-GLYCOSYLATION IN E. COLI;928
11.2.7;6. TOWARDS A NEW ERA IN GLYCO-ENGINEERING;929
11.2.8;7. CONCLUSIONS;933
11.2.9;ACKNOWLEDGEMENTS;934
11.2.10;REFERENCES;934
11.3;Chapter 47. Glycomimetics as inhibitors in anti-infection therapy;936
11.3.1;SUMMARY;936
11.3.2;1. INTRODUCTION;936
11.3.3;2. REPLACEMENT OF THE RING OXYGEN;937
11.3.4;3. REPLACEMENT OF THE GLYCOSIDIC OXYGEN;943
11.3.5;4. MIMICKING SPECIFIC FUNCTIONAL GROUPS WITHIN SUGARS – SIALYLMIMETICS;946
11.3.6;5. GLYCOMIMETICS IN CURRENT CLINICAL USE AS ANTI-INFECTIVES;948
11.3.7;6. CONCLUSIONS AND FUTURE DIRECTIONS;949
11.3.8;REFERENCES;950
11.4;Chapter 48. Bacterial polysaccharide vaccines: glycoconjugates and peptide-mimetics;954
11.4.1;SUMMARY;954
11.4.2;1. INTRODUCTION;954
11.4.3;2. CAPSULAR POLYSACCHARIDE–PROTEIN CONJUGATES;955
11.4.4;3. SYNTHETIC GLYCOCONJUGATE VACCINES;968
11.4.5;4. PEPTIDE-MIMETICS OF POLYSACCHARIDE EPITOPES;970
11.4.6;5. CONCLUSIONS;972
11.4.7;REFERENCES;973
11.5;Chapter 49. Immunomodulation by zwitterionic polysaccharides;978
11.5.1;SUMMARY;978
11.5.2;1. INTRODUCTION;978
11.5.3;2. IMMUNOMODULATION BY POLYSACCHARIDES;979
11.5.4;3. ZWITTERIONIC POLYSACCHARIDES (ZPSs);981
11.5.5;4. ACTIVATION OF T-CELLS BY ZPSs THROUGH INNATE AND ADAPTIVE IMMUNOMODULATION;984
11.5.6;5. BIOLOGICAL IMPACT OF ZPS-INDUCED T-CELL ACTIVATION;992
11.5.7;6. POTENTIAL FOR ZPSs AS THERAPEUTICS;995
11.5.8;7. CONCLUSIONS;997
11.5.9;REFERENCES;999
11.6;Chapter 50. Future potential of glycomics in microbiology and infectious diseases;1002
11.6.1;SUMMARY;1002
11.6.2;1. INTRODUCTION;1002
11.6.3;2. ADVANCES IN CARBOHYDRATE ANALYTICAL TECHNIQUES;1003
11.6.4;3. FUTURE OUTLOOK;1005
11.6.5;REFERENCES;1005
12;INDEX;1008
12.1;A;1008
12.2;B;1008
12.3;C;1008
12.4;D;1010
12.5;E;1010
12.6;F;1011
12.7;G;1011
12.8;H;1012
12.9;I;1013
12.10;K;1013
12.11;L;1013
12.12;M;1015
12.13;N;1016
12.14;O;1017
12.15;P;1017
12.16;R;1018
12.17;S;1018
12.18;T;1019
12.19;U;1020
12.20;V;1020
12.21;W;1021
12.22;X;1021
12.23;Y;1021
12.24;Z;1021
13;COLOUR PLATES;1022



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.