Müller-Stach / Huber | Periods and Nori Motives | Buch | 978-3-319-84524-1 | sack.de

Buch, Englisch, Band 65, 372 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 5971 g

Reihe: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics

Müller-Stach / Huber

Periods and Nori Motives


Softcover Nachdruck of the original 1. Auflage 2017
ISBN: 978-3-319-84524-1
Verlag: Springer International Publishing

Buch, Englisch, Band 65, 372 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 5971 g

Reihe: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics

ISBN: 978-3-319-84524-1
Verlag: Springer International Publishing


This book casts the theory of periods of algebraic varieties in the natural setting of Madhav Nori’s abelian category of mixed motives. It develops Nori’s approach to mixed motives from scratch, thereby filling an important gap in the literature, and then explains the connection of mixed motives to periods, including a detailed account of the theory of period numbers in the sense of Kontsevich-Zagier and their structural properties.
Period numbers are central to number theory and algebraic geometry, and also play an important role in other fields such as mathematical physics. There are long-standing conjectures about their transcendence properties, best understood in the language of cohomology of algebraic varieties or, more generally, motives. Readers of this book will discover that Nori’s unconditional construction of an abelian category of motives (over fields embeddable into the complex numbers) is particularly well suited for this purpose. Notably, Kontsevich's formal period algebra represents a torsor under the motivic Galois group in Nori's sense, and the period conjecture of Kontsevich and Zagier can be recast in this setting.
Periods and Nori Motives is highly informative and will appeal to graduate students interested in algebraic geometry and number theory as well as researchers working in related fields. Containing relevant background material on topics such as singular cohomology, algebraic de Rham cohomology, diagram categories and rigid tensor categories, as well as many interesting examples, the overall presentation of this book is self-contained.
Müller-Stach / Huber Periods and Nori Motives jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Part I Background Material.- General Set-Up.- Singular Cohomology.- Algebraic de Rham Cohomology.- Holomorphic de Rham Cohomology.- The Period Isomorphism.- Categories of (Mixed) Motives.- Part II Nori Motives.- Nori's Diagram Category.- More on Diagrams.- Nori Motives.- Weights and Pure Nori Motives.- Part III Periods.- Periods of Varieties.- Kontsevich–Zagier Periods.- Formal Periods and the Period Conjecture.- Part IV Examples.- Elementary Examples.- Multiple Zeta Values.- Miscellaneous Periods: an Outlook.


Annette Huber works in arithmetic geometry, in particular on motives and special values of L-functions. She has contributed to all aspects of the Bloch-Kato conjecture, a vast generalization of the class number formula and the conjecture of Birch and Swinnerton-Dyer. More recent research interests include period numbers in general and differential forms on singular varieties.

Stefan Müller-Stach works in algebraic geometry, focussing on algebraic cycles, regulators and period integrals. His work includes the detection of classes in motivic cohomology via regulators and the study of special subvarieties in Mumford-Tate varieties. More recent research interests include periods and their relations to mathematical physics and foundations of mathematics.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.