Muller / Rollinson | Advances in Parasitology | E-Book | sack.de
E-Book

E-Book, Englisch, Band Volume 60, 372 Seiten

Reihe: Advances in Parasitology

Muller / Rollinson Advances in Parasitology


1. Auflage 2005
ISBN: 978-0-08-045810-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, Band Volume 60, 372 Seiten

Reihe: Advances in Parasitology

ISBN: 978-0-08-045810-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



First published in 1963, Advances in Parasitology contains comprehensive and up-to-date reviews in all areas of interest in contemporary parasitology. Advances in Parasitology includes medical studies on parasites of major influence, such as Plasmodium falciparum and Trypanosomes. The series also contains reviews of more traditional areas, such as zoology, taxonomy, and life history, which shape current thinking and applications. With an impact factor of 3.9 the series ranks second in the ISI Parasitology subject category.

Muller / Rollinson Advances in Parasitology jetzt bestellen!

Weitere Infos & Material


1;Cover;1
2;Advances in Parasitology;4
3;Contributors to Volume 60;6
4;Preface;8
5;Contents;10
6;Sulfur-Containing Amino Acid Metabolism in Parasitic Protozoa;14
6.1;Introduction;18
6.2;Biological Importance of Sulfur-containing Amino Acids and their Metabolic Pathways;19
6.2.1;General Features and Functions of Sulfur;19
6.2.2;Functions of Sulfur-Containing Amino Acids;19
6.2.2.1;General Functions of Sulfur-Containing Amino Acids;19
6.2.2.2;Functions of AdoMet;21
6.2.3;Significance of Sulfur-Containing Amino Acids in Parasitic Protozoa;23
6.2.3.1;Significance of Methionine in Parasitic Protozoa;23
6.2.3.2;Requirement of Extracellular Cysteine for Anaerobic or Microaerophilic Protozoa;24
6.2.3.3;Significance of Cysteine as an Antioxidant in Entamoeba histolytica, Giardia duodenalis and Trichomonas vaginalis;24
6.2.3.4;Physiological Importance of Cysteine in Trypanosoma and Leishmania;25
6.3;Metabolism of Sulfur-containing Amino Acids;26
6.3.1;An Overview of Metabolism of Sulfur-Containing Amino Acids;26
6.3.2;Methionine Metabolism;27
6.3.2.1;A General Scheme of Methionine Activation;27
6.3.2.2;A General Scheme of Two Pathways for Methionine Recycling;28
6.3.2.3;Ubiquity and Significance of Methionine Activation in Parasitic Protozoa;32
6.3.2.4;Distribution and Significance of the Methionine Recycling Pathways in Protozoa;39
6.3.2.5;S-Adenosylmethionine Decarboxylase (AdoMetDC) from Protozoan Parasites;42
6.3.3;Transsulfuration Reactions;44
6.3.3.1;Terminology and General Description of Forward and Reverse Transsulfuration Pathways;44
6.3.3.2;Transsulfuration Pathway in Animals;45
6.3.3.3;Transsulfuration Pathway in Bacteria, Fungi and Plants;46
6.3.3.4;Transsulfuration Pathways in Parasitic Protozoa;47
6.4;Sulfur Assimilatory De Novo Cysteine Biosynthetic Pathway;49
6.4.1;A General Scheme of the Cysteine Biosynthetic Pathway;49
6.4.2;Presence of the Cysteine Biosynthetic Pathway in a Limited Range of Parasitic Protozoa;50
6.4.3;Possible Functions of the Cysteine Biosynthetic Pathway in Entamoeba and Trypanosoma;52
6.4.3.1;Contradiction Between the Presence of Cysteine Biosynthesis and the Apparent Requirement of Cysteine in Entamoeba histolytica;52
6.4.3.2;Roles of the Cysteine Biosynthetic Pathway in Antioxidative Defense Mechanisms and ISC Biosynthesis in Entamoeba histolytica;53
6.4.3.3;Roles of the Cysteine Biosynthetic Pathway in Trypanosoma cruzi;55
6.4.3.4;Other Possible Roles of the Cysteine Biosynthetic Pathway in Parasitic Protozoa and Possible Drug Development;56
6.5;Degradative Pathways of Sulfur-containing Amino Acids;58
6.5.1;Degradation of Sulfur-Containing Amino Acids in Mammals;58
6.5.2;Peculiarities and Distribution of MGL among Parasitic Protozoa;59
6.5.3;Functions of MGL in the Anaerobic Protozoan Parasites Entamoeba histolytica and Trichomonas vaginalis;61
6.5.4;MGL as a Target for the Development of Novel Drugs Against Entamoeba histolytica and Trichomonas vaginalis;63
6.6;Serine Metabolic Pathways;64
6.6.1;Serine Metabolic Pathways in Eukaryotes;64
6.6.1.1;A General Scheme of Phosphorylated and Non-phosphorylated Serine Metabolic Pathways in Mammals;64
6.6.1.2;Regulation of the Phosphorylated Serine Metabolic Pathway;64
6.6.1.3;Serine Dehydratase for Serine– Pyruvate Conversion and Gluconeogenesis in Mammals;67
6.6.1.4;Serine-Glycine Conversion by Serine Hydroxymethyltransferase;67
6.6.1.5;Human Genetic Disorders and Physiological Importance of the Serine Metabolic Pathway;68
6.6.2;A Spectrum of Serine Metabolic Pathways in Parasitic Protozoa;69
6.6.2.1;A Survey of Enzymes of Phosphorylated and Non-phosphorylated Serine Metabolic Pathways in Parasitic Protozoa;69
6.6.2.2;Distribution of Serine-Glycine and Serine-Pyruvate Conversion Pathways in Parasitic Protozoa;71
6.6.3;Unique Presence of Both Serine Metabolic Pathways in Entamoeba histolytica and Trichomonas vaginalis;73
6.6.3.1;The Phosphorylated Serine Pathway in Entamoeba histolytica;74
6.6.3.2;The Non-Phosphorylated Serine Pathway in Entamoeba mbihistolytica;75
6.6.3.3;Origin of Serine Metabolic Pathways in Entamoeba .16em histolytica and Trichomonas vaginalis;76
6.6.4;Biological Significance of Serine Metabolic Pathways in Parasitic Protozoa;77
6.7;Developmental Stage Regulation of Metabolic Pathways of Sulfur-containing Amino Acids;79
6.7.1;Developmental Stage Regulation of Reverse Transsulfuration and De Novo Cysteine Biosynthetic Pathways in Trypanosoma cruzi;79
6.7.2;Developmental Stage Regulation of Sulfur-Containing Amino Acid Metabolism in Plasmodium and Cryptosporidium;80
6.8;Remaining Questions and Future Perspectives;82
6.9;Acknowledgments;83
6.10;References;84
7;The Use and Implications of Ribosomal DNA Sequencing for the Discrimination of Digenean Species;114
7.1;Introduction;116
7.2;The Digenea;116
7.3;Species Distinction: Traditional and Modern Approaches;117
7.3.1;Advantages and Disadvantages of Using Molecular Techniques for Systematic Studies;118
7.4;Genes and Spacers;119
7.4.1;Ribosomal DNA;120
7.4.1.1;Internal Transcribed Spacer rDNA (ITS1, 5.8S rRNA Gene and ITS2) Region;122
7.4.1.1.1;Internal transcribed spacer 1 (ITS1) of rDNA;123
7.4.1.1.2;Internal transcribed spacer 2 (ITS2) of rDNA;123
7.5;Studies Using Its rDNA to Distinguish Digenean Species;124
7.5.1;Apocreadiidae;125
7.5.2;Bivesiculidae;125
7.5.3;Cladorchiidae;125
7.5.4;Didymozoidae;125
7.5.5;DiplostomidaeDagger;126
7.5.6;Echinostomatidae;127
7.5.7;Fasciolidae;128
7.5.8;Haematoloechidae;129
7.5.9;Lepocreadiidae;130
7.5.10;Leucochloridiidae;130
7.5.11;Mesometridae;131
7.5.12;Monorchiidae;131
7.5.13;Opecoelidae;132
7.5.14;Paragonimidae;133
7.5.15;Plagiorchiidae;138
7.5.16;Sanguinicolidae;138
7.5.17;Schistosomatidae;138
7.5.18;Strigeidae;144
7.5.19;Telorchiidae;145
7.6;The Interpretation of Its rDNA Sequences;145
7.6.1;Identical Sequences, Different Species;146
7.6.2;Interspecific Variation;148
7.6.3;Intraspecific Variation;149
7.6.3.1;Error;149
7.6.3.2;Failure to Recognise Multiple Species;151
7.6.3.3;Geographical Variation;153
7.6.3.4;‘‘Real’’ Intraspecific Variation;156
7.6.3.5;The Recognition of Species;157
7.7;Implications of Its Sequencing for Digenean Taxonomy;159
7.7.1;Implications for Species Richness;160
7.7.2;Implications for Morphological Taxonomy;161
7.7.3;When to Name a New Species?;162
7.8;Conclusions;166
7.8.1;Is ITS Sequencing Effective?;166
7.8.2;Remaining Problems;167
7.8.3;An Effective Study;168
7.9;References;169
8;Advances and Trends in the Molecular Systematics of the Parasitic Platyhelminthes;178
8.1;Introduction;179
8.1.1;DNA Taxonomy;181
8.1.2;The Platyhelminthes as Lophotrochozoan Bilaterians;182
8.1.3;Interrelationships and Position of the Neodermata;183
8.1.4;Abbreviations;184
8.2;Molecular Systematics of the Cestoda;185
8.2.1;Interrelationships of the Major Lineages of Cestodes;185
8.2.2;Inter- and Intraspecific Variation in the Cestodes;189
8.3;Molecular Systematics of the Digenea;193
8.3.1;Non-Sequence-Based Works;194
8.3.2;Interrelationships of the Major Lineages of Digeneans;195
8.3.3;Interrelationships of Genera and Families;198
8.3.4;Inter- and Intraspecific Variation in the Digeneans;200
8.3.4.1;Systematics of Schistosoma and Related Blood Flukes;200
8.3.4.2;Systematics of the Liver Flukes Fasciola and Paragonimus;202
8.3.4.3;Systematics of Animal Flukes;203
8.4;Molecular Systematics of the Monogenea;207
8.4.1;Non-Monophyly of the Monogenea;208
8.4.2;Interrelationships of the Monopisthocotylea and Polyopisthocotylea;209
8.4.3;Systematics of Select Groups;211
8.4.3.1;Udonella as a Monopisthocotylean Monogenean;212
8.4.3.2;Systematics of the Dactylogyridae;213
8.4.3.3;Systematics of the Polystomatidae;213
8.4.4;Systematics and Diagnostics in Gyrodactylus;214
8.5;Beyond Systematics: Molecular Diagnostics;217
8.5.1;Ecological Diagnostics and Life Cycle Studies;219
8.5.1.1;Cestoda;219
8.5.1.2;Digenea;220
8.5.2;Clinical Diagnostics;221
8.6;Future Directions;222
8.6.1;Taxonomic Considerations;222
8.6.2;Analytical Considerations;224
8.6.3;Molecular Targets;225
8.6.4;Genomics;225
8.6.4.1;Mitochondrial Genomes;225
8.6.4.2;Nuclear Genomes and Transcriptomes;226
8.7;Acknowledgments;228
8.8;References;228
9; Wolbachia Bacterial Endosymbionts of Filarial Nematodes;258
9.1;The Cellular Environment of Wolbachia in Nematodes;259
9.1.1;Habitat;259
9.1.2;Growth and Population Dynamics;261
9.2;Taxonomy and Diversity of the Genus Wolbachia;262
9.2.1;Wolbachia in Arthropods;265
9.2.2;Wolbachia in Nematodes;265
9.2.3;Distribution and Phylogeny of Wolbachia in the Onchocercinae and Dirofilarinae;269
9.3;Evidence for Dependence;271
9.3.1;Indirect Evidence;271
9.3.2;Direct Evidence;273
9.3.3;Antibiotic Therapy as a New Treatment for Human Filariasis;276
9.3.4;Genomic Insights into the Nature of the Symbiosis;279
9.4;Wolbachia-Mediated Activation of Inflammation;281
9.4.1;Lymphatic Filariasis;281
9.4.2;Onchocerciasis;283
9.4.3;Dirofilariasis;284
9.4.4;Wolbachia Serology;285
9.5;Future Advances/Concluding Remarks;286
9.6;References;287
10;The Biology of Avian Eimeria with an Emphasis on their Control by Vaccination;298
10.1;Introduction;300
10.1.1;Eimeria spp. and the Need for their Control;300
10.1.2;Life Cycles of Eimeria spp., Including the Relevance of Different Endogenous Stages to the Induction of Protective Immunity;302
10.2;Immunity to Eimeria spp.;305
10.2.1;The Immunological Relationship between the Host and Eimeria spp.;305
10.2.2;Protective Immune Responses;307
10.3;Vaccine Strategies;310
10.3.1;Live Vaccines;310
10.3.2;Wild-type Strains of Eimeria spp.;310
10.3.3;Live-Attenuated Vaccines;312
10.3.4;Use and Efficacy of Live Vaccines;316
10.3.5;Antigenic Diversity;320
10.3.6;Maternal Immunisation—Transmission Blocking Immunity;323
10.4;Prospects for the Development of Novel Vaccines;324
10.4.1;Recent Advances that have Relevance to Vaccine Development;324
10.4.2;Testing of Recombinant-Expressed Antigens as Vaccines;327
10.4.3;DNA Vaccination;328
10.5;Conclusions;329
10.6;References;331
11;Index;344
12;Contributors to Volume 60;6



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.