Buch, Englisch, 106 Seiten, Format (B × H): 170 mm x 240 mm, Gewicht: 320 g
Buch, Englisch, 106 Seiten, Format (B × H): 170 mm x 240 mm, Gewicht: 320 g
ISBN: 978-3-0357-1013-7
Verlag: Trans Tech Publications
The 42nd volume of "Journal of Biomimetics, Biomaterials and Biomedical Engineering" contains papers that present to readers with the latest results of scientific research and engineering decisions in the fields of the biomechanics, utilization of modern biomaterials for implantation and in tissue engineering, biochemical methods and methods of processing the medical images for the early cancer diagnostic in the current medical practice. We hope that this volume will be useful for many researchers and engineers involved in different branches of modern biomedicine.
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Medizintechnik, Biomedizintechnik
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizintechnik, Biomedizintechnik, Medizinische Werkstoffe
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Biomaterialien, Nanomaterialien, Kohlenstoff
- Technische Wissenschaften Technik Allgemein Bionik, Biomimetik
Weitere Infos & Material
Assessment of Muscles Fatigue during 400-Meters Running Strategies Based on the Surface EMG Signals
Collagen-Chitosan- Glycerol-HPMC Composite as Cornea Artificial Candidate
The Effects of Biodegradation on the Cytocompatibility of Bioresorbable Fe-Based Scaffolds: A Review
Using Chitosan Besides Nano Hydroxyapatite and Fluorohydroxyapatite Boost Dental Pulp Stem Cell Proliferation
In Vitro Nucleic Acid Hybridization for the Identification of High-Risk Human Papillomavirus (HPV) in Cervical Clinical Specimens
Portable and Rapid In Vivo Imaging of Tissue Oxygenation Changes Induced by Skin Perfusion Pressure
Segmented and Non-Segmented Skin Lesions Classification Using Transfer Learning and Adaptive Moment Learning Rate Technique Using Pretrained Convolutional Neural Network
Classification of Mammograms Using Texture and CNN Based Extracted Features