E-Book, Englisch, Band 15, 408 Seiten, Web PDF
Reihe: Confident Series
Nelson Confident Data Science
1. Auflage 2023
ISBN: 978-1-3986-1233-4
Verlag: Kogan Page
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Discover the Essential Skills of Data Science
E-Book, Englisch, Band 15, 408 Seiten, Web PDF
Reihe: Confident Series
ISBN: 978-1-3986-1233-4
Verlag: Kogan Page
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
The global data market is estimated to be worth $64 billion dollars, making it a more valuable resource than oil. But data is useless without the analysis, interpretation and innovations of data scientists.
With Confident Data Science, learn the essential skills and build your confidence in this sector through key insights and practical tools for success. In this book, you will discover all of the skills you need to understand this discipline, from primers on the key analytic and visualization tools to tips for pitching to and working with clients.
Adam Ross Nelson draws upon his expertise as a data science consultant and, as someone who made moved into the industry late in his career, to provide an overview of data science, including its key concepts, its history and the knowledge required to become a successful data scientist. Whether you are considering a career in this industry or simply looking to expand your knowledge, Confident Data Science is the essential guide to the world of data science.
About the Confident series.
From coding and data science to cloud and cyber security, the Confident books are perfect for building your technical knowledge and enhancing your professional career.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Automatische Datenerfassung, Datenanalyse
- Wirtschaftswissenschaften Wirtschaftswissenschaften Wirtschaftswissenschaften: Berufe, Ausbildung, Karriereplanung
- Wirtschaftswissenschaften Wirtschaftswissenschaften Wirtschaft: Sachbuch, Ratgeber
Weitere Infos & Material
Section - SECTION ONE: Getting oriented; Chapter - 01: The untold history of data science; Chapter - 02: Genres and flavours of analysis; Chapter - 03: Data culture and the data science process; Section - SECTION TWO: Getting going; Chapter - 04: Data science examples in production; Chapter - 05: A weekend crash course; Section - SECTION THREE: Data science for clients; Chapter - 06: The client, the project and the data; Chapter - 07: Topic analysis; Chapter - 08: Regression; Chapter - 09: Classification; Chapter - 10: Sentiment analysis; Section - SECTION FOUR: Tools of the trade; Chapter - 11: Data sources; Chapter - 12: Data visualization; Chapter - 13: Python + R; Chapter - 14: Retrospective / prospective