E-Book, Deutsch, 335 Seiten, eBook
Reihe: Springer-Lehrbuch
Neunzert / Eschmann / Blickensdörfer-Ehlers Analysis 1
2. Auflage 1993
ISBN: 978-3-642-97461-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Ein Lehr- und Arbeitsbuch für Studienanfänger
E-Book, Deutsch, 335 Seiten, eBook
Reihe: Springer-Lehrbuch
ISBN: 978-3-642-97461-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Dieses Lehr- und Arbeitsbuch bietet dem Studienanfänger aus Physik und Ingenieurwissenschaften, der Praxis im Umgang mit der Mathematik erwerben möchte, durch Darstellung und didaktische Gestaltung wertvolle Hilfestellung bei der Erarbeitung mathematischen Grundwissens. Die Gestaltung des Textes, die den Leser immer wieder anregt, Gedankenschritte selbst zu vollziehen, weiterzuführen, Verbindungen herzustellen, Rechnungen nachzuvollziehen und die eigenen Kenntnisse zu überprüfen, bietet hier größtmögliche Unterstützung. Stoffauswahl und Reihenfolge orientieren sich so weit wie möglich an den Bedürfnissen der den Studenten primär interessierenden Wissenschaftsgebiete. Immer wieder werden anwendungsbezogene Beispiele gegeben und ausführlich bearbeitet. Definitionen und Sätze sind vollständig formuliert. Beweise werden nur da weggelassen, wo sie weder dem Verständnis des Satzes noch dem Einüben bestimmter Schlußweisen oder Begriffe dienen. Bei der Bearbeitung der ca. 250 Aufgaben wird dem Studenten eine gestufte Hilfestellung in Form von Lösungshinweisen und der kompletten Lösung gegeben.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Weitere Infos & Material
1. Die Reellen Zahlen.- § 1 Mengen.- § 2 Funktionen.- § 3 Die reellen Zahlen.- Zusammenfassung.- 2. Vollständige Induktion.- § 1 Beweis durch vollständige Induktion.- § 2 Rekursive Definitionen.- § 3 n-te Potenz und n-te Wurzel.- Zusammenfassung.- 3. Die Komplexen Zahlen.- § 1 Definition und Veranschaulichung.- § 2 Der Körper C der komplexen Zahlen.- § 3 Realteil, Imaginärteil, Betrag.- § 4 Die Polarform.- § 5 n-te Wurzeln einer komplexen Zahl.- Zusammenfassung.- 4. Reelle und Komplexe Funktionen.- § 1 Definition der reellen Funktionen und Beispiele.- § 2 Monotone Funktionen.- § 3 Beispiele aus der Wechselstromlehre.- § 4 Rechnen mit reellen Funktionen.- § 5 Polynome.- § 6 Komplexe Funktionen.- Zusammenfassung.- 5. Das Supremum.- § 1 Schranken, Maximum, Minimum, Supremum, Infimum.- § 2 Das Supremumsaxiom.- § 3 Eigenschaften von Supremum und Infimum.- § 4 Supremum und Maximum bei Funktionen.- § 5 Dual-, Dezimal- und Hexadezimalzahlen.- Zusammenfassung.- 6. Folgen.- § 1 Definition.- § 2 Monotonie und Beschränktheit.- § 3 Konvergenz und Divergenz.- § 4 Komplexe Folgen.- Zusammenfassung.- 7. Einführung in die Integralrechnung.- § 1 Beispiele.- § 2 Obersumme und Untersumme.- § 3 Die Definition des Integrals.- § 4 Das Riemannsche Integrabilitätskriterium.- § 5 Integral als Grenzwert einer Folge.- § 6 Numerische Integration.- § 7 Eigenschaften des Integrals.- Zusammenfassung.- 8. Reihen.- (Zenon’s Paradoxon).- § 1 Beispiele.- § 2 Konvergente Reihen.- § 3 Konvergenzkriterien.- § 4 Absolut konvergente Reihen.- Zusammenfassung.- 9. Potenzreihen und Spezielle Funktionen.- § 1 Potenzreihen.- § 2 Exponentialfunktion.- § 3 Sinus und Cosinus.- § 4 Hyperbelfunktionen.- Zusammenfassung.- 10. Stetige Funktionen.- § 1 Stetigkeit.- § 2Anwendung auf spezielle Funktionen.- § 3 Die ?-?-Definition der Stetigkeit und die Lipschitz-Stegigkeit.- § 4 Stetigkeit und Integration.- Zusammenfassung.- 11. Differentialrechnung.- § 1 Lineare Approximation.- § 2 Definition der Differenzierbarkeit.- § 3 Differenzierbare Funktionen.- § 4 Rechenregeln für differenzierbare Funktionen.- § 5 Die Ableitung komplexer Funktionen.- § 6 Höhere Ableitungen.- § 7 Beispiele von Differentialgleichungen und Lösungen.- § 8 Der erste Mittelwertsatz.- § 9 Die Regeln von de L’Hôpital.- Zusammenfassung.- 12. Integralrechnung-Integrationstechnik.- § 1 Der Hauptsatz der Differential-und Integralrechnung.- § 2 Die Stammfunktion.- § 3 Eine andere Formulierung des Hauptsatzes.- § 4 Integration zur Lösung einfachster Differentialgleichungen.- § 5 Das unbestimmte Integral.- § 6 Dié Integration komplexer Funktionen.- § 7 Integrationsmethoden.- § 8 Separable Differentialgleichungen.- § 9 Integration rationaler Funktionen.- Zusammenfassung.- 13. Uneigentliche Integrale.- § 1 Unbeschränktes Integrationsintervall.- § 2 Unbeschränkter Integrand.- § 3 Die Gairanafunktion.- § 4 Die Laplace-Transformation.- Zusammenfassung.- 14. Taylorpolynome und Taylorreihen.- § 1 Approximation durch Polynome.- § 2 Restglied.- § 3 Taylorreihen.- Zusammenfassung.- Lösungen der Aufgaben.