Buch, Englisch, 92 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 197 g
Feedback with Magnetic Field and Magnetic Cavity
Buch, Englisch, 92 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 197 g
Reihe: SpringerBriefs in Applied Sciences and Technology
ISBN: 978-981-19-6175-5
Verlag: Springer Nature Singapore
The phase-locking of multiple spin-torque nano oscillators(STNOs) is considered the primary vehicle to achieve sufficient signal quality for applications. This book highlights the resonator's design and its need for feedback for phase locking of STNOs. STNOs can act as sources of tunable microwaves after being phase-locked together. External feedback from a coplanar waveguide placed above an STNO helps ensures coherent single domain oscillations. STNOs placed within magnonic crystal cavities also demonstrate coherent oscillations. Arrays of such cavities provide a route to scale power levels from such nano-oscillators. The book presents numerical and micromagnetics to validate the design.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Angewandte Physik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Elektronik, Optik
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik
- Naturwissenschaften Chemie Chemie Allgemein
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
Weitere Infos & Material
1 - Introduction
1 1.1 Magnonic devices
1 1.1.1 Unconventional Computing
3 1.1.2 Hybrid magnonics and Magnon spintronics
4 1.1.3 STNO configurations
6 1.1.4 STNO device principle
8 1.1.5 Mutual synchronization of STNOs
8 1.2 Landau - Lifshitz - Gilbert - Slonczewski equation
94 1.2.1 Numerical Methods
10 1.2.2 Finite Difference and Finite Element method
14 Summary
2- Analytical model for a magnonic ring resonator
2.1 Geometry and analysis
2.2 Dispersion relation of curved magnonic waveguide
2.3 Validations
2.4 Modes in a magnonic ring
3 - Magnonic spectra in 2D antidot magnonic crystals with ring
3.1 Plane wave method
3.1.1 Convergence
3.2 Eigenmodes
3.3 Micromagnetic simulations
3.3.1 Magnonic spectra
3.3.2 Antidot magnonic crystal waveguide with linear defect
4 – Magnetic resonators with magnetic field feedback
4. 1 Introduction
4. 1 Problem statement
4. 2 Micromagnetic simulation without magnetic field feedback
4.3 Free layer model
4.4 Free layer Hysteresis loops
4.5 Ferromagnetic resonance frequency versus applied field
4.6 FMR versus applied field for different in plane and out of plane anisotropy FMR versus applied field for different out of plane anisotropy
4.7 Current dependence on resonance frequency
4.8 Spintronic oscillators with magnetic field feedback
4.9 Spin wave dynamics with magnetic field feedback
4.10 Spin wave dynamics at 300 K
4.11 Linewidth (Without magnetic field feedback)
4.4 Linewidth (with magnetic field feedback)
4.5 Spin wave spectra with different delay
5 – Magnetic resonators magnetic cavity feedback
5.1- I. Introduction
5.1.2. Micromagnetic Simulations
5.1.3 Method of Calculation
5.1.4 Band structure of antidot MC
5.1.5 Spin wave injection on Py film using an array of nano contacts
5.1.6 Fabry Perot model
5.1.7 Quality Factor Calculation