Niskanen Mechanics of Paper Products
1. Auflage 2011
ISBN: 978-3-11-025463-1
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 271 Seiten
Reihe: De Gruyter Textbook
ISBN: 978-3-11-025463-1
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Zielgruppe
Advanced students in paper science, packaging and mechanical engineering programs
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1;Preface;6
2;List of Contributing Authors;8
3;Contents;10
4;1 The challenge;16
5;2 Paper as an engineering material;20
5.1;2.1 Introduction;20
5.2;2.2 Linear elasticity of paper;21
5.2.1;2.2.1 Elastic constants;21
5.2.2;2.2.2 Typical stiffness values for paper;24
5.3;2.3 Stress-strain behavior of paper;26
5.3.1;2.3.1 In-plane tensile loading;26
5.3.2;2.3.2 Visco-elastic effects;30
5.3.3;2.3.3 Other loading modes;30
5.4;2.4 Multi-axial strength;32
5.5;2.5 Mechanical properties in relation to the papermaking process;34
5.5.1;2.5.1 Preparation of papermaking fibers;34
5.5.2;2.5.2 Effect of the paper machine;37
6;Part I: Structural strength;42
6.1;3 Packaging performance;44
6.1.1;3.1 Introduction;44
6.1.2;3.2 Paper-based packaging materials;45
6.1.2.1;3.2.1 Corrugated board;45
6.1.2.2;3.2.2 Box manufacturing process;48
6.1.2.3;3.2.3 Carton board;49
6.1.3;3.3 Loads imposed on boxes;50
6.2;3.4. Strength of boxes;53
6.2.1;3.4.1 Short-term compressive loading;53
6.2.2;3.4.2 Empirical models for static box strength;57
6.2.3;3.4.3 Finite element models;59
6.2.4;3.4.4 Long-term loading;62
6.2.5;3.5 Summary;63
6.3;4 Behavior of corners in carton board boxes;68
6.3.1;4.1 Introduction;68
6.3.2;4.2 Folding of a multiply carton board;70
6.3.3;4.3 Creasing;74
6.3.4;4.4 Important material properties;78
6.3.5;4.5 Final remarks;78
6.4;5 Fracture properties;82
6.4.1;5.1 Introduction;82
6.4.2;5.2 Examples of practical applications of fracture mechanics;84
6.4.2.1;5.2.1 Mode I failure under in-plane tension;84
6.4.2.2;5.2.2 Out-of-plane delamination;87
6.4.3;5.3 Crack tip modeling in paper materials;88
6.4.3.1;5.3.1 Characteristic length scale and the basis of crack tip modeling;88
6.4.3.2;5.3.2 Linear elastic fracture mechanics LEFM;90
6.4.3.3;5.3.3 Nonlinear fracture mechanics using J-integral;91
6.4.3.4;5.3.4 Cohesive zone models;94
6.4.3.5;5.3.5 Continuum damage mechanics modeling of paper;96
6.4.3.6;5.3.6 Delamination of paper materials;98
6.4.4;5.4 Compressive failure;100
6.4.5;5.5 Summary;102
7;Part II: Dynamic stability;106
7.1;6 Web dynamics in paper transport systems;108
7.1.1;6.1 Introduction;108
7.1.2;6.2 Dynamics of web transport;109
7.1.2.1;6.2.1 Basic formulation of web transport problems;109
7.1.2.2;6.2.2 The case of an axially moving web;110
7.1.2.3;6.2.3 Moving thread problem;115
7.1.2.4;6.2.4 Fluttering of a two-dimensional web;120
7.1.3;6.3 Concluding remarks;122
7.2;7 Creep and relaxation;126
7.2.1;7.1 Introduction;126
7.2.2;7.2 Relaxation and creep as phenomena;127
7.2.3;7.3 Modeling of time-dependence;129
7.2.3.1;7.3.1 Linear behavior;129
7.2.3.2;7.3.2 Nonlinearity;130
7.2.3.3;7.3.3 Recoverability;131
7.2.3.4;7.3.4 Time scales;132
7.2.4;7.4 Creep and relaxation properties of paper;134
7.2.4.1;7.4.1 Creep;135
7.2.4.2;7.4.2 Stress relaxation;137
7.2.4.3;7.4.3 Tensile versus compressive creep;138
7.2.4.4;7.4.4 Effect of the papermaking process and furnish;139
7.2.5;7.5 Moisture effects;141
7.2.5.1;7.5.1 Softening with moisture;141
7.2.5.2;7.5.2 Accelerated creep;142
7.2.6;7.6 Prediction of box lifetime;144
7.2.6.1;7.6.1 Creep response of a box;144
7.2.6.2;7.6.2 Previous equations for box lifetime;146
7.2.6.3;7.6.3 Derivation of a new equation for box lifetime;147
7.2.6.4;7.6.4 Accounting for variability;148
7.2.7;7.7 Summary;149
7.3;8 Statistical aspects of failure of paper products;154
7.3.1;8.1 Introduction;154
7.3.2;8.2 Practical examples;154
7.3.2.1;8.2.1 Web breaks in a printing press and on a paper machine;154
7.3.2.2;8.2.2 Stacking performance of boxes;157
7.3.3;8.3 Statistical approaches for failure in materials or systems;158
7.3.3.1;8.3.1 The chain model;159
7.3.3.2;8.3.2 The bundle model;160
7.3.3.3;8.3.3 Time-dependent, statistical failure model;162
7.3.4;8.4 Statistical failure of paper;164
7.3.4.1;8.4.1 Strength distributions;165
7.3.4.2;8.4.2 Factors controlling strength distributions;166
7.3.4.3;8.4.3 Strength scaling;167
7.3.4.4;8.4.4 Web break prediction;169
7.3.5;8.5 Research front of statistical failure of paper;171
7.3.6;8.6 Concluding remarks;172
8;Part III: Reactions to moisture and water;176
8.1;9 Moisture-induced deformations;178
8.1.1;9.1 Introduction;178
8.1.2;9.2 Moisture-induced deformations;178
8.1.2.1;9.2.1 Hygroexpansion of paper;178
8.1.2.2;9.2.2 Effect of moisture history;182
8.1.3;9.3 Fluting;186
8.1.3.1;9.3.1 Tension wrinkling;186
8.1.3.2;9.3.2 Effect of small scale strain variations;189
8.1.3.3;9.3.3 Fluting vs. cockling;192
8.1.4;9.4 Summary;193
8.2;10 Mechanics in printing nip for paper and board;196
8.2.1;10.1 Introduction;196
8.2.2;10.2 Nip mechanics in offset printing of paper;197
8.2.3;10.3 Nip mechanics in flexo post printing of corrugated board;201
8.2.4;10.4 Micro-fluidics of ink in printing nip;203
8.2.5;10.5 Concluding remarks;206
9;Part IV: Material properties;210
9.1;11 Micromechanics;212
9.1.1;11.1 Introduction;212
9.1.2;11.2 Fiber network structure;213
9.1.2.1;11.2.1 Two-dimensional network;213
9.1.2.2;11.2.2 Densification mechanisms;215
9.1.2.3;11.2.3 Statistical geometry of real fiber networks;216
9.1.2.4;11.2.4 Key structural factors when engineering the mechanical properties of paper;220
9.1.3;11.3 Elastic modulus;221
9.1.3.1;11.3.1 The effect of paper density;221
9.1.3.2;11.3.2 The shear-lag mechanism;223
9.1.3.3;11.3.3 The activation mechanism;225
9.1.3.4;11.3.4 Elastic modulus of activated fiber network;226
9.1.3.5;11.3.5 Key factors when engineering the elastic modulus of paper;230
9.1.4;11.4 Stress-strain behavior, creep, and bond opening;231
9.1.5;11.5 Fracture process in the fiber network;235
9.1.5.1;11.5.1 Microscopic observations;235
9.1.5.2;11.5.2 Micromechanical description of the fracture process;236
9.1.6;11.6 Hygroexpansion;240
9.1.7;11.7 Final remarks;242
9.2;12 Wood biocomposites – extending the property range of paper products;246
9.2.1;12.1 Introduction;246
9.2.2;12.2 Material components: fibers and polymers;251
9.2.2.1;12.2.1 Plant fiber structure;251
9.2.2.2;12.2.2 Polymer matrices and binders;255
9.2.3;12.3 Micromechanics of fiber composites;257
9.2.3.1;12.3.1 Weight fraction and volume fraction;257
9.2.3.2;12.3.2 Elastic properties in unidirectional composites;258
9.2.3.3;12.3.3 Elastic properties in short fiber composites;259
9.2.3.4;12.3.4 Interfacial strength in short fiber composites;261
9.2.4;12.4 Composites data: wood fiber/thermoplastic;262
9.2.5;12.5 Composites data: wood fiber/thermoset;263
9.2.6;12.6 Nano-fibrillated cellulose materials;265
9.2.6.1;12.6.1 Cellulosic “nano-paper”;265
9.2.6.2;12.6.2 Nano-composites;267
9.2.7;12.7 Conclusions;267
10;Index;270