Buch, Englisch, 143 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 260 g
Reihe: Springer Theses
Buch, Englisch, 143 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 260 g
Reihe: Springer Theses
ISBN: 978-981-10-9354-8
Verlag: Springer Nature Singapore
This book covers high-transition temperature (T) s-wave superconductivity and the neighboring Mott insulating phase in alkali-doped fullerides. The author presents (1) a unified theoretical description of the phase diagram and (2) a nonempirical calculation of T. For these purposes, the author employs an extension of the DFT+DMFT (density-functional theory + dynamical mean-field theory). He constructs a realistic electron–phonon-coupled Hamiltonian with a newly formulated downfolding method. The Hamiltonian is analyzed by means of the extended DMFT. A notable aspect of the approach is that it requires only the crystal structure as a priori knowledge.
Remarkably, the nonempirical calculation achieves for the first time a quantitative reproduction of the experimental phase diagram including the superconductivity and the Mott phase. The calculated T agrees well with the experimental data, with the difference within 10 K.
The book provides details of the computational scheme, which can also be applied to other superconductors and other phonon-related topics. The author clearly describes a superconducting mechanism where the Coulomb and electron–phonon interactions show an unusual cooperation in the superconductivity thanks to the Jahn–Teller nature of the phonons.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Quantenphysik Atom- und Molekülphysik
- Naturwissenschaften Physik Elektromagnetismus Halbleiter- und Supraleiterphysik
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Naturwissenschaften Physik Thermodynamik Festkörperphysik, Kondensierte Materie
Weitere Infos & Material
Introduction to superconductivity in alkali-doped fullerides.- Methods: Ab initio downfolding and model-calculation techniques.- Application of cDFPT to alkali-doped fullerides.- Analysis of low-energy Hamiltonians with extended DMFT.- Concluding remarks.