Buch, Englisch, 370 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 581 g
Buch, Englisch, 370 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 581 g
Reihe: Springer Series in Synergetics
ISBN: 978-3-642-09035-6
Verlag: Springer
This work systematically investigates a large number of oscillatory network configurations that are able to describe many real systems such as electric power grids, lasers or even the heart muscle, to name but a few. The book is conceived as an introduction to the field for graduate students in physics and applied mathematics as well as being a compendium for researchers from any field of application interested in quantitative models.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Angewandte Physik Biophysik
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Naturwissenschaften Physik Angewandte Physik Geophysik
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Naturwissenschaften Physik Angewandte Physik Medizinische Physik
- Naturwissenschaften Biowissenschaften Angewandte Biologie Biophysik
Weitere Infos & Material
Basics on Synchronization and Paradigmatic Models.- Basic Models.- Synchronization Due to External Periodic Forcing.- Synchronization of Two Coupled Systems.- Synchronization in Geometrically Regular Ensembles.- Ensembles of Phase Oscillators.- Chains of Coupled Limit-Cycle Oscillators.- Ensembles of Chaotic Oscillators with a Periodic-Doubling Route to Chaos, R#x00F6;ssler Oscillators.- Intermittent-Like Oscillations in Chains of Coupled Maps.- Regular and Chaotic Phase Synchronization of Coupled Circle Maps.- Controlling Phase Synchronization in Oscillatory Networks.- Chains of Limit-Cycle Oscillators.- Chains and Lattices of Excitable Luo–Rudy Systems.- Synchronization in Complex Networks and Influence of Noise.- Noise-Induced Synchronization in Ensembles of Oscillatory and Excitable Systems.- Networks with Complex Topology.