Pahud / del Pedro | Vibration Mechanics | Buch | 978-0-7923-1427-1 | sack.de

Buch, Englisch, 335 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1490 g

Pahud / del Pedro

Vibration Mechanics

Linear Discrete Systems
1991
ISBN: 978-0-7923-1427-1
Verlag: Springer Netherlands

Linear Discrete Systems

Buch, Englisch, 335 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1490 g

ISBN: 978-0-7923-1427-1
Verlag: Springer Netherlands


Objectives This book is used to teach vibratory mechanics to undergraduate engineers at the Swiss Federal Institute of Technology of Lausanne. It is a basic course, at the level of the first university degree, necessary for the proper comprehension of the following disciplines. Vibrations of continuous linear systems (beams, plates) random vibration of linear systems vibrations of non-linear systems dynamics of structures experimental methods, rheological models, etc. Effective teaching methods have been given the highest priority. Thus the book covers basic theories of vibratory mechanics in an ap­ propriately rigorous and complete way, and is illustrated by nume­ rous applied examples. In addition to university students, it is suitable for industrial engineers who want to strengthen or complete their training. It has been written so that someone working alone should find it easy to read. pescription The subject of the book is the vibrations of linear mechanical sys­ tems having only a finite number of degrees of freedom (ie discrete linear systems). These can be divided into the following two catego­ ries: -X- systems of solids which are considered to be rigid, and which are acted upon by elastic forces and by linear resist.ive forces (viscous damping forces). deformable continuous systems which have been made discrete. In other words, systems which are replaced (approximately) by systems having only a limited number of degrees of freedom, using digital or experimental methods.

Pahud / del Pedro Vibration Mechanics jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Introduction.- 1.1 Brief history.- 1.2 Disruptive or useful vibrations.- 2 The Linear Elementary Oscillator of Mechanics.- 2.1 Definitions and notation.- 2.2 Equation of motion and vibratory states.- 2.3 Modified forms of the equation of motion.- 3 The Free State of the Elementary Oscillator.- 3.1 Conservative free state · Harmonic oscillator.- 3.2 Conservation of energy.- 3.3 Examples of conservative oscillators.- 3.4 Dissipative free state.- 3.5 Energy of the dissipative oscillator.- 3.6 Phase plane graph.- 3.7 Examples of dissipative oscillators.- 4 Harmonic Steady State.- 4.1 Amplitude and phase as a function of frequency.- 4.2 Graph of rotating vectors.- 4.3 Use of complex numbers · Frequency response.- 4.4 Power consumed in the steady state.- 4.5 Natural and resonant angular frequencies.- 4.6 The Nyquist graph.- 4.7 Examples of harmonic steady states.- 5 Periodic Steady State.- 5.1 Fourier series · Excitation and response spectra.- 5.2 Complex form of the Fourier series.- 5.3 Examples of periodic steady states.- 6 Forced State.- 6.1 Laplace transform.- 6.2 General solution of the forced state.- 6.3 Response to an impulse and to a unit step force.- 6.4 Responses to an impulse and to a unit step elastic displacement.- 6.5 Fourier transformation.- 6.6 Examples of forced states.- 7 Electrical Analogues.- 7.1 Generalities.- 7.2 Force-current analogy.- 7.3 Extension to systems with several degrees of freedom · Circuits of forces.- 8 Systems with Two Degrees of Freedom.- 8.1 Generalities · Concept of coupling.- 8.2 Free state and natural modes of the conservative system.- 8.3 Study of elastic coupling.- 8.4 Examples of oscillators with two degrees of freedom.- 9 The Frahm Damper.- 9.1 Definition and differential equations of the system.- 9.2 Harmonic steadystate.- 9.3 Limiting cases of the damping.- 9.4 Optimization of the Frahm damper.- 9.5 Examples of applications.- 9.6 The Lanchester damper.- 10 The Concept of the Generalized Oscillator.- 10.1 Definition and energetic forms of the generalized oscillator.- 10.2 Differentiation of a symmetrical quadratic form · Equations of Lagrange.- 10.3 Examination of particular cases.- 11 Free State of the Conservative Generalized Oscillator.- 11.1 Introduction.- 11.2 Solution of the system by linear combination of specific solutions.- 11.3 Solution of the system by change of coordinates.- 11.4 Response to an initial excitation.- 11.5 Rayleigh quotient.- 11.6 Examples of conservative generalized oscillators.- 12 Free State of the Dissipative Generalized Oscillator.- 12.1 Limits of classical modal analysis.- 12.2 Dissipative free state with real modes.- 12.3 Response to an initial excitation in the case of real modes.- 12.4 General case.- 12.5 Hamiltonian equations for the system.- 12.6 Solution of the differential system.- 12.7 Response to an initial excitation in the general case.- 12.8 Direct search for specific solutions.- 12.9 Another form of the characteristic equation.- 13 Example of Visualization of Complex Natural Modes.- 13.1 Description of the system.- 13.2 Energetic form · Differential equation.- 13.3 Isolation of a mode.- 13.4 Numerical examples.- 13.5 Summary and comments.- 14 Forced State of the Generalized Oscillator.- 14.1 Introduction.- 14.2 Dissipative systems with real modes.- 14.3 Dissipative systems in the general case.- 14.4 Introduction to experimental modal analysis.- Symbol List.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.