Buch, Englisch, 512 Seiten, Format (B × H): 180 mm x 257 mm, Gewicht: 1140 g
Buch, Englisch, 512 Seiten, Format (B × H): 180 mm x 257 mm, Gewicht: 1140 g
ISBN: 978-0-521-76222-9
Verlag: Cambridge University Press
Over the past two decades there have been significant advances in the field of optimization. In particular, convex optimization has emerged as a powerful signal processing tool, and the variety of applications continues to grow rapidly. This book, written by a team of leading experts, sets out the theoretical underpinnings of the subject and provides tutorials on a wide range of convex optimization applications. Emphasis throughout is on cutting-edge research and on formulating problems in convex form, making this an ideal textbook for advanced graduate courses and a useful self-study guide. Topics covered range from automatic code generation, graphical models, and gradient-based algorithms for signal recovery, to semidefinite programming (SDP) relaxation and radar waveform design via SDP. It also includes blind source separation for image processing, robust broadband beamforming, distributed multi-agent optimization for networked systems, cognitive radio systems via game theory, and the variational inequality approach for Nash equilibrium solutions.
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Optische Nachrichtentechnik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Operations Research
Weitere Infos & Material
1. Automatic code generation for real-time convex optimization J. Mattingley and S. Boyd; 2. Gradient-based algorithms with applications to signal recovery problems A. Beck and M. Teboulle; 3. Graphical models of autoregressive processes J. Songsiri, J. Dahl and L. Vandenberghe; 4. SDP relaxation of homogeneous quadratic optimization Z. Q. Luo and T. H. Chang; 5. Probabilistic analysis of SDR detectors for MIMO systems A. Man-Cho So and Y. Ye; 6. Semidefinite programming, matrix decomposition, and radar code design Y. Huang, A. De Maio and S. Zhang; 7. Convex analysis for non-negative blind source separation with application in imaging W. K. Ma, T. H. Chan, C. Y. Chi and Y. Wang; 8. Optimization techniques in modern sampling theory T. Michaeli and Y. C. Eldar; 9. Robust broadband adaptive beamforming using convex optimization M. Rübsamen, A. El-Keyi, A. B. Gershman and T. Kirubarajan; 10. Cooperative distributed multi-agent optimization A. Nenadic and A. Ozdaglar; 11. Competitive optimization of cognitive radio MIMO systems via game theory G. Scutari, D. P. Palomar and S. Barbarossa; 12. Nash equilibria: the variational approach F. Facchinei and J. S. Pang.