Pantazi / Bochtis | Intelligent Data Mining and Fusion Systems in Agriculture | Buch | 978-0-12-814391-9 | sack.de

Buch, Englisch, 330 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 500 g

Pantazi / Bochtis

Intelligent Data Mining and Fusion Systems in Agriculture


Erscheinungsjahr 2019
ISBN: 978-0-12-814391-9
Verlag: William Andrew Publishing

Buch, Englisch, 330 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 500 g

ISBN: 978-0-12-814391-9
Verlag: William Andrew Publishing


Intelligent Data Mining and Fusion Systems in Agriculture presents methods of computational intelligence and data fusion that have applications in agriculture for the non-destructive testing of agricultural products and crop condition monitoring. Sections cover the combination of sensors with artificial intelligence architectures in precision agriculture, including algorithms, bio-inspired hierarchical neural maps, and novelty detection algorithms capable of detecting sudden changes in different conditions. This book offers advanced students and entry-level professionals in agricultural science and engineering, geography and geoinformation science an in-depth overview of the connection between decision-making in agricultural operations and the decision support features offered by advanced computational intelligence algorithms.
Pantazi / Bochtis Intelligent Data Mining and Fusion Systems in Agriculture jetzt bestellen!

Zielgruppe


<p>Advanced students in agricultural science and engineering and entry-level professionals in agricultural science and engineering, geography and geoinformation science and computer science</p>

Weitere Infos & Material


1. Sensors in Agriculture2. Artificial Intelligence in Agriculture3. Utilization of Multisensors and Data Fusion in Precision Agriculture4. Tutorial I: Weed Detection5. Tutorial II: Disease Detection with Fusion Techniques6. Tutorial III: Disease and Nutrient Stress Detection7. Tutorial IV: Leaf Disease Recognition8. Tutorial V: Yield Prediction9. Tutorial VI: Postharvest Phenotyping10. General Overview of the Proposed Data Mining and Fusion Techniques in Agriculture


Pantazi, Xanthoula-Eirini
Dr. Xanthoula-Eirini Pantazi holds a PhD in biosystems engineering and is an expert in bio-inspired computational systems and data mining. Her research interests include precision farming, plant stress detection, sensor fusion, machine learning, non-destructive sensing of biomaterial, and crop protection. Her research focuses on advanced contextual fusion framework from diverse information sources, including an unsupervised fusion framework where sparse encoding produces latent variables capturing context from multimodal information. She has developed a meta-learning framework for lifelong learning in autonomous systems based on active learning and novelty classifiers based on one-class assemblies with dynamic conflict resolution. Recent research includes an application of active learning in condition monitoring, crop status determination, weed species recognition, crop phenotyping, and post-harvest quality determination. She has presented 30 relevant papers in international conferences and has published 12 papers in scientific journals and 5 book chapters in research monographs.

Bochtis, Dionysis
Dionysis D Bochtis works on the area of Systems Engineering focused on bio-production and related provision systems including, both, conventional systems with enhanced ICT and automation technologies and fully robotized systems, having held various positions ncluding: Professor (Agri-Robotics) at the Lincoln Institute for Agri-Food technologies, University of Lincoln, UK, and Senior Scientist (Operations Management) at the Department of Engineering at Aarhus University, Denmark. Currently, he is the Director of the Institute for Bio-economy and Agri-technology (IBO), Center of Research and Technology - Hellas (CERTH). He is the author of more than 300 articles (90 in peer reviewed journals) and has been invited for more than 30 key-note speeches around the globe.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.