Pepe / Egger / Melito | Segmentation of the Aorta. Towards the Automatic Segmentation, Modeling, and Meshing of the Aortic Vessel Tree from Multicenter Acquisition | Buch | 978-3-031-53240-5 | sack.de

Buch, Englisch, 142 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 248 g

Reihe: Lecture Notes in Computer Science

Pepe / Egger / Melito

Segmentation of the Aorta. Towards the Automatic Segmentation, Modeling, and Meshing of the Aortic Vessel Tree from Multicenter Acquisition

First Challenge, SEG.A. 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings
1. Auflage 2024
ISBN: 978-3-031-53240-5
Verlag: Springer Nature Switzerland

First Challenge, SEG.A. 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings

Buch, Englisch, 142 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 248 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-53240-5
Verlag: Springer Nature Switzerland


This book constitutes the First Segmentation of the Aorta Challenge, SEG.A. 2023, which was held in conjunction with the 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023, on October 8, 2023. 
The 8 full and 3 short papers presented have been carefully reviewed and selected for inclusion in the book. They focus specifically on robustness, visual quality and meshing of automatically generated segmentations of aortic vessel trees from CT imaging. The challenge was organized as a ”container submission” challenge, where participants had to upload their algorithms to Grand Challenge in the form of Docker containers. Three tasks were created for SEG.A. 2023.

Pepe / Egger / Melito Segmentation of the Aorta. Towards the Automatic Segmentation, Modeling, and Meshing of the Aortic Vessel Tree from Multicenter Acquisition jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


M3F: Multi-Field-of-View Feature Fusion Network for Aortic Vessel Tree Segmentation in CT Angiography.- Aorta Segmentation from 3D CT in MICCAI SEG.A. 2023 Challenge.- A Data-Centric Approach for Segmenting the Aortic Vessel Tree: A Solution to SEG.A. Challenge 2023 Segmentation Task.- Automatic Aorta Segmentation with Heavily Augmented, High-Resolution 3-D ResUNet: Contribution to the SEG.A Challenge.- Position-encoded pixel-to-prototype contrastive learning for aortic vessel tree segmentation.- Misclassification Loss for Segmentation of the Aortic Vessel Tree.- Deep Learning-based segmentation and mesh reconstruction of the Aortic Vessel Tree from CTA images.- RASNet: U-Net-based Robust Aortic Segmentation Network For Multicenter Datasets.- Optimizing Aortic Segmentation with an Innovative Quality Assessment: The Role of Global Sensitivity Analysis.- A mini tutorial on mesh generation of blood vessels for CFD applications.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.