Perner | Advances in Data Mining | Buch | 978-3-540-24054-9 | sack.de

Buch, Englisch, 176 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 295 g

Reihe: Lecture Notes in Artificial Intelligence

Perner

Advances in Data Mining

Applications in Image Mining, Medicine and Biotechnology, Management and Environmental Control, and Telecommunications; 4th Industrial Conference on Data Mining, ICDM 2004, Leipzig, Germany, July 4-7, 2004, Revised Selected Papers
2005
ISBN: 978-3-540-24054-9
Verlag: Springer Berlin Heidelberg

Applications in Image Mining, Medicine and Biotechnology, Management and Environmental Control, and Telecommunications; 4th Industrial Conference on Data Mining, ICDM 2004, Leipzig, Germany, July 4-7, 2004, Revised Selected Papers

Buch, Englisch, 176 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 295 g

Reihe: Lecture Notes in Artificial Intelligence

ISBN: 978-3-540-24054-9
Verlag: Springer Berlin Heidelberg


The Industrial Conference on Data Mining ICDM-Leipzig was the fourth meeting in a series of annual events which started in 2000, organized by the Institute of Computer Vision and Applied Computer Sciences (IBaI) in Leipzig. The mission of the conference is to bring together researchers and people from industry in order to discuss together new trends and applications in data mining. This year a broad spectrum of work of different applications was presented ranging from image mining, medicine and biotechnology, management and environmental control, to telecommunications. Besides that an industrial exhibition showed the successful application of data mining methods by industries in different areas such as medical devices, mass data management systems, data mining tools, etc. During the discussion many projects were inspired leading to new and joint work. The fruitful discussions, the exchange of ideas and the spirit of the conference made it a remarkable event for both sides, industry and research. We would like to express our appreciation to the reviewers for their precise and highly professional work. We appreciate the help and understanding of the editorial staff at Springer and in particular Alfred Hofmann, who supported the publication of these proceedings in the LNAI series. Last, but not least, we wish to thank all speakers, participants and industrial exhibitors who contributed to the success of the conference. We are looking forward to welcoming you to ICDM 2005 (www.data-mini- forum.de) and to the new work you will present there.

Perner Advances in Data Mining jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Case-Based Reasoning.- Neuro-symbolic System for Business Internal Control.- Applying Case Based Reasoning Approach in Analyzing Organizational Change Management Data.- Improving the K-NN Classification with the Euclidean Distance Through Linear Data Transformations.- An IBR System to Quantify the Ocean’s Carbon Dioxide Budget.- A Beta-Cooperative CBR System for Constructing a Business Management Model.- Image Mining.- Braving the Semantic Gap: Mapping Visual Concepts from Images and Videos.- Mining Images to Find General Forms of Biological Objects.- Applications in Process Control and Insurance.- The Main Steps to Data Quality.- Cost-Sensitive Design of Claim Fraud Screens.- An Early Warning System for Vehicle Related Quality Data.- Clustering and Association Rules.- Shape-Invariant Cluster Validity Indices.- Mining Indirect Association Rules.- An Association Mining Method for Time Series and Its Application in the Stock Prices of TFT-LCD Industry.- Clustering of Web Sessions Using Levenshtein Metric.- Telecommunication.- A Data Mining Approach for Call Admission Control and Resource Reservation in Wireless Mobile Networks.- Mining of an Alarm Log to Improve the Discovery of Frequent Patterns.- Medicine and Biotechnology.- Feature Selection and Classification Model Construction on Type 2 Diabetic Patient’s Data.- Knowledge Based Phylogenetic Classification Mining.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.