Pfeffer | The Divergence Theorem and Sets of Finite Perimeter | Buch | 978-0-367-38151-6 | sack.de

Buch, Englisch, 259 Seiten, Format (B × H): 155 mm x 231 mm, Gewicht: 318 g

Pfeffer

The Divergence Theorem and Sets of Finite Perimeter


1. Auflage 2019
ISBN: 978-0-367-38151-6
Verlag: CRC Press

Buch, Englisch, 259 Seiten, Format (B × H): 155 mm x 231 mm, Gewicht: 318 g

ISBN: 978-0-367-38151-6
Verlag: CRC Press


This book is devoted to a detailed development of the divergence theorem. The framework is that of Lebesgue integration — no generalized Riemann integrals of Henstock–Kurzweil variety are involved.

In Part I the divergence theorem is established by a combinatorial argument involving dyadic cubes. Only elementary properties of the Lebesgue integral and Hausdorff measures are used. The resulting integration by parts is sufficiently general for many applications. As an example, it is applied to removable singularities of Cauchy–Riemann, Laplace, and minimal surface equations.

The sets of finite perimeter are introduced in Part II. Both the geometric and analytic points of view are presented. The equivalence of these viewpoints is obtained via the functions of bounded variation. These functions are studied in a self-contained manner with no references to Sobolev’s spaces. The coarea theorem provides a link between the sets of finite perimeter and functions of bounded variation.

The general divergence theorem for bounded vector fields is proved in Part III. The proof consists of adapting the combinatorial argument of Part I to sets of finite perimeter. The unbounded vector fields and mean divergence are also discussed. The final chapter contains a characterization of the distributions that are equal to the flux of a continuous vector field.

Pfeffer The Divergence Theorem and Sets of Finite Perimeter jetzt bestellen!

Zielgruppe


Professional Practice & Development


Autoren/Hrsg.


Weitere Infos & Material


DYADIC FIGURES: Preliminaries. Divergence Theorem for Dyadic Figures. Removable Singularities. SETS OF FINITE PERIMETER: Perimeter. BV Functions. Locally BV Sets. THE DIVERGENCE THEOREM: Bounded Vector Fields. Unbounded Vector Fields. Mean Divergence. Charges. The Divergence Equation.


Pfeffer, Washek F.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.