Pingali / Banerjee / Padua | Languages and Compilers for Parallel Computing | Buch | 978-3-540-58868-9 | sack.de

Buch, Englisch, Band 892, 503 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 1590 g

Reihe: Lecture Notes in Computer Science

Pingali / Banerjee / Padua

Languages and Compilers for Parallel Computing

7th International Workshop, Ithaca, NY, USA, August 8 - 10, 1994. Proceedings
1995
ISBN: 978-3-540-58868-9
Verlag: Springer Berlin Heidelberg

7th International Workshop, Ithaca, NY, USA, August 8 - 10, 1994. Proceedings

Buch, Englisch, Band 892, 503 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 1590 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-540-58868-9
Verlag: Springer Berlin Heidelberg


This volume presents revised versions of the 32 papers accepted for the Seventh Annual Workshop on Languages and Compilers for Parallel Computing, held in Ithaca, NY in August 1994.
The 32 papers presented report on the leading research activities in languages and compilers for parallel computing and thus reflect the state of the art in the field. The volume is organized in sections on fine-grain parallelism, align- ment and distribution, postlinear loop transformation, parallel structures, program analysis, computer communication, automatic parallelization, languages for parallelism, scheduling and program optimization, and program evaluation.
Pingali / Banerjee / Padua Languages and Compilers for Parallel Computing jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Fine-grain scheduling under resource constraints.- Mutation scheduling: A unified approach to compiling for fine-grain parallelism.- Compiler techniques for fine-grain execution on workstation clusters using PAPERS.- Solving alignment using elementary linear algebra.- Detecting and using affinity in an automatic data distribution tool.- Array distribution in data-parallel programs.- Communication-free parallelization via affine transformations.- Finding legal reordering transformations using mappings.- A new algorithm for global optimization for parallelism and locality.- Polaris: Improving the effectiveness of parallelizing compilers.- A formal approach to the compilation of data-parallel languages.- The data partitioning graph: Extending data and control dependencies for data partitioning.- Detecting value-based scalar dependence.- Minimal data dependence abstractions for loop transformations.- Differences in algorithmic parallelism in control flow and call multigraphs.- Flow-insensitive interprocedural alias analysis in the presence of pointers.- Incremental generation of index sets for array statement execution on distributed-memory machines.- A unified data-flow framework for optimizing communication.- Interprocedural communication optimizations for distributed memory compilation.- Analysis of event synchronization in parallel programs.- Computing communication sets for control parallel programs.- Optimizing parallel SPMD programs.- An overview of the Opus language and runtime system.- SIMPLE performance results in ZPL.- Cid: A parallel, “shared-memory” C for distributed-memory machines.- EQ: Overview of a new language approach for prototyping scientific computation.- Reshaping access patterns for generating sparse codes.- Evaluating two loop transformationsfor reducing multiple-writer false sharing.- Parallelizing tree algorithms: Overhead vs. parallelism.- Autoscheduling in a distributed shared-memory environment.- Optimizing array distributions in data-parallel programs.- Automatic reduction tree generation for fine-grain parallel architectures when iteration count is unknown.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.